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Fig. 1. We present a novel method for approximating input models (left) with tensile-like surfaces. Our method automatically decomposes the target mesh
into near-developable patches, identifies a sparse set of supports, and generates a sparse set of tension strings (middle). The output of our method captures

the high visual appeal of tensile structures and is ready for fabrication (right).

We propose a novel method to automatically approximate a free-form surface
using a set of near developable patches that form a tensile-like structure
when anchored at a sparse set of points. These structures are appealing
for their ability to span large areas with low material cost and structural
weight, while also offering strong aesthetic potential. Our algorithm strikes
a balance between approximation accuracy, patch simplicity, and visual
quality, while ensuring manufacturability and structural feasibility. The
layout is guided by a curvature field and refined through a combinatorial
process that incrementally adds patches until performance and fabrication
constraints are met. Redundant elements are then removed to improve clarity
and elegance.

We demonstrate the effectiveness of our method on several architectural
surfaces, supported by fabricated prototypes that showcase the interplay
between geometric design, structural behavior, and visual appeal.
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1 Introduction

Tensile structures are lightweight surfaces shaped by tension and
anchored at discrete support points, combining material efficiency
with expressive geometric form. These structures offer elegant solu-
tions for efficiently covering large spans. Recently, tensile structures
have garnered significant interest in both architecture and indus-
try, thanks to their low cost and rapid deployability compared to
other structural systems. A key advantage of these structures is
their ability to conform to complex geometries without the need for
strict structural constraints, such as funicularity, that are typically
required in systems like gridshells.

Tensile structures consist of large, lightweight patches whose self-
weight is typically negligible for structural evaluation. These patches
achieve equilibrium when tensioned and anchored at a sparse set of
points. Despite their practical relevance, most of the geometry pro-
cessing literature has surprisingly focused on the optimization and
design of gridshells or masonry-inspired structures [Pottmann et al.
2015]. In contrast, few methods focus on the computational design

SA Conference Papers 25, December 15-18, 2025, Hong Kong, Hong Kong.


HTTPS://ORCID.ORG/0009-0002-0107-5461
HTTPS://ORCID.ORG/0000-0002-8271-2102
HTTPS://ORCID.ORG/0000-0002-3800-0861
HTTPS://ORCID.ORG/0000-0002-5062-4474
HTTPS://ORCID.ORG/0000-0001-6511-9385
https://orcid.org/0009-0002-0107-5461
https://orcid.org/0000-0002-8271-2102
https://orcid.org/0000-0002-3800-0861
https://orcid.org/0000-0002-5062-4474
https://orcid.org/0000-0001-6511-9385
https://creativecommons.org/licenses/by-sa/4.0
https://creativecommons.org/licenses/by-sa/4.0
https://creativecommons.org/licenses/by-sa/4.0
https://doi.org/10.1145/3757377.3763941
https://doi.org/10.1145/3757377.3763941

2 .« Eggleretal

of tensile structures, with most of the work addressing tensegrity
systems [Gauge et al. 2015; Pietroni et al. 2017]. Designing tensile
structures computationally involves negotiating a complex trade-off
between geometric accuracy, fabrication constraints, and aesthetic
appeal [Gale and Lewis 2016; Kamal 2020; Wagner 2005]. Two key
challenges lie in deriving a minimal set of visually coherent patches
that accurately approximate a target surface, and ensuring that
the structure remains in tension when anchored at a sparse set of
fixed points. Moreover, to ensure fabricability using standard mate-
rials, each patch must exhibit high developability, permitting only
minimal stretching when brought into tension.

In this work, we introduce the first method for automatically
generating nearly developable tensile-like structures from arbitrary
input surfaces. Given an initial patch decomposition, our method
minimizes the number of fixed anchor points needed to approximate
the input within a prescribed geometric error. This yields forms that
are structurally efficient and visually coherent. At the core of our
framework is a global optimization process that selects the fixed
vertices from a patch layout such that the remaining surface can
relax into a smooth tensile equilibrium. To ensure fabricability using
minimally stretchable materials, we map the resulting surface to a
set of nearly planar patches and enforce developability via iterative
optimization. These geometric procedures are embedded within
a framework that incrementally refines the patch decomposition,
minimizing complexity while satisfying structural and approxima-
tion constraints. A key feature of our approach is the integration of
aesthetic criteria: aligning seams with principal curvature lines pro-
duces visually clean, harmonious structures that reflect the surface’s
intrinsic geometry while remaining physically feasible.

2 Related Work

In recent years, the field of architectural geometry [Pottmann et al.
2015] has extensively leveraged principles of computational design
to create structures that are both functional and aesthetically pleas-
ing. Significant progress has been made in the context of optimal
design of architectural models [Whiting et al. 2009, 2012], masonry
structures [de Goes et al. 2013; Liu et al. 2013; Panozzo et al. 2013;
Vouga et al. 2012], structures composed by interlocking planar pieces
[Cignoni et al. 2014; Hildebrand et al. 2012; Schwartzburg and Pauly
2013] or structurally sound planar tessellations [Bouaziz et al. 2012;
Pietroni et al. 2015; Tonelli et al. 2016]. In computational design, the
user focuses primarily on the aesthetic aspects of the form, while
practical considerations such as structural stability, cost, and as-
semblability are delegated to an underlying algorithm. Following
this paradigm, a wide range of algorithms have been developed for
architectural computational design.

While some work has been done in the context of architectural
geometry, the research most closely related to ours focuses on the
design and optimization of tensegrity structures. Additionally, our
problem shares similarities with methods for defining developable
surfaces and with form-finding approaches for tensile and mem-
brane structures. Finally, we provide an overview of techniques for
patch decomposition, which are central to our framework.
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2.1 Tensile membrane structure

Despite a rich body of literature on tensile simulation, fabric behav-
ior, and construction methodologies, most computational design
methods for tensile structures focus on optimizing predefined con-
figurations. Some approaches [Gale and Lewis 2016] are limited to
optimizing planar panel arrangements using discrete modeling and
advanced flattening techniques. Others [Wagner 2005] require an
initial patch layout that is flattened and then slightly adjusted to
ensure fabricability. However, there still remains a research gap in
the problem of automatically approximating a target shape with
physically realizable tensile structures [Kamal 2020]. Our work ad-
dresses this gap by reversing the traditional workflow, starting with
the target shape and working backward to derive an appropriate
tensile structure.

A related line of work arises in inflatable structure design, where
the “patterning problem” couples flat panel cutting with non-linear
physical response. Seminal approaches [Pérez et al. 2015; Siéfert
et al. 2019; Skouras et al. 2012, 2014; Zhang 2023] highlight this tight
interplay between geometry and physics. Unlike these workflows,
which involve a physically different setup and rely on manually spec-
ified constraints, our method advances the process by introducing a
fully automatic anchor insertion strategy.

2.2 Tensegrities

Tensegrities are structures typically composed of a network of ca-
bles and struts, where equilibrium is achieved through a balance of
compressive forces (carried by the struts) and tensile forces (carried
by the cables). Recent computational methods have addressed the
automatic design of tensegrity systems from input surfaces [Gauge
et al. 2015; Pietroni et al. 2017]. At the same time, the mechanical
engineering and architectural communities have devoted signifi-
cant attention to the topic [Micheletti and Podio-Guidugli 2022],
driven by the structural advantages of tensegrities, such as light-
ness, flexibility, and material efficiency. Like our setting, tensegrity
design is often framed as an optimization problem, where equilib-
rium constraints are enforced iteratively. For example, the approach
proposed by Pietroni and colleagues [2017] combines geometric and
static constraints to ensure the structure is both stable and resistant
to external forces. However, the computational design of tensile
structures introduces a fundamentally different set of challenges. In
tensegrities, the structure is defined by a network of linear elements
whose connectivity and force distribution are explicitly modeled. In
contrast, tensile structures are typically composed of continuous
surface patches whose shape and equilibrium emerge from their
boundary conditions and tension state. This requires different strat-
egy: instead of balancing discrete forces along struts and cables, we
should model global equilibrium of a deformable surface anchored
at a (possibly minimal) sparse set of points. Moreover, ensuring
the developability of each patch introduces additional geometric
constraints not present in tensegrity design.

2.3 Form-finding

Form-finding refers to the process of discovering a shape that is in
static equilibrium under specific loading and boundary conditions,
such that it experiences only in-plane internal forces, typically axial



forces, as in grid shells. Several core numerical methods have been
developed for this purpose [Veenendaal and Block 2012], including
the Force Density Method [Schek 1974] and the Thrust Network
Analysis [Block 2009]. Despite some fundamental similarities, ten-
sile structures present a significantly different setup compared to
classical form-finding. Traditional approaches often aim to produce
catenary-like surfaces with clearly defined boundary conditions.
In contrast, in our case, the identification of boundary constraint,
i.e., the location and number of anchor points, is itself part of the
problem to be solved.

2.4 Developability

Developability has been extensively studied in geometry processing,
with numerous generative algorithms proposed for different applica-
tions [Bo and Wang 2007; Rabinovich et al. 2018; Tang et al. 2016]. In
the context of fabrication using inextensible materials, the problem
is typically formulated as finding the closest perfectly developable
approximation of a given discrete input mesh. Approaches in this cat-
egory include convex optimization under developability constraints
[Sellan et al. 2020], wrapping objects with developable sheets [Ion
etal. 2020], segmenting surfaces into developable regions [Zhao et al.
2022], and more recent methods based on genetic algorithms [Zhao
et al. 2023] or curvature fields [Baharami et al. 2025]. However, most
of these techniques focus only on deforming the input surface to
achieve developability. In contrast, the design of tensile structures
imposes additional requirements: patch layouts must remain in ten-
sion and be supported only at a sparse set of anchor points. This
fundamentally changes the structure of the problem and introduces
new constraints that are not addressed by standard developable
surface methods. The proposed framework generates patch lay-
outs which are not only nearly developable and fabrication-friendly,
but also remain in equilibrium under tension when anchored at a
minimal set of points—thereby aligning geometric, structural, and
aesthetic objectives within a unified computational design process.

2.5 Patch Decomposition

Flattening arbitrary 3D surfaces often leads to significant deforma-
tion [Yoshizawa et al. 2004] and can even cause self-intersections
in the 2D domain [Rabinovich et al. 2017]. A common strategy
to mitigate these issues is to cut the surface into smaller patches
before flattening [Li et al. 2018; Sharp and Crane 2018] ; for a de-
tailed overview, we refer the reader to [Campen 2017]. State-of-the-
art techniques—including ours—generate cuts by tracing tangent
vector fields over the surface, often aligned with principal curva-
ture directions [Nuvoli et al. 2019; Pietroni et al. 2022, 2021, 2016;
Razaflndrazaka et al. 2015]. Several patch decomposition techniques
have already been employed in computational design problems, such
as in fashion design [Pietroni et al. 2022] and inflatable structures
[Skouras et al. 2014].

Our method extends the robust cut construction strategy intro-
duced in [Pietroni et al. 2021], which promotes cut straightness and
compactness. In our case, patch decomposition is not only used to
facilitate flattening but serves as a core mechanism for deriving an
optimized patch layout that meets the physical constraints required
to realize tensile structures in the real world.
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3  Overview

Our primary goal is to approximate a given input surface (Figure
2.a) with a tensile structure composed of an interconnected network
of welded patches (Figure 2.b). Each patch is held in tension in its de-
ployed configuration, connected to adjacent patches and anchored
at a sparse set of anchor points (Figure 2.c). These anchors may be
attached to supporting structures, fixed to the ground, or suspended
via tensioned cables connected to rigid poles (Figure 2.d). The re-
sulting structure is physically sound—it satisfies force equilibrium
at every node and exhibits approximately uniform tension across all
patches. To ensure the surface is fabricable, each patch is designed
to be nearly developable, allowing minimal extensibility to meet
tension constraints while remaining manufacturable. Further details
of the workflow are provided in the accompanying pseudocode.

3.1 Design Goals

To be a valid and fabricable tensile structure, our solution must
satisfy several key constraints:

Tension and equilibrium The assembled structure must be
in static equilibrium, with all patches held under tension.
Each node must satisfy force balance conditions, ensuring
mechanical soundness.

Bijectivity Each patch must be realizable by cutting from a
textile sheet. This requires that every patch admits a bijective,
overlap-free mapping to the 2D plane.

Disk-like topology All patches must be homeomorphic to a
disk, with a single boundary component. In addition, patches
must not be self-glued, as this would complicate tensioning
and require an impractical number of anchors to maintain
stability.

Aesthetic quality To facilitate fabrication and ensure practical
architectural applicability, we aim for a limited number of
patches, each with a simple and visually pleasing shape.

Geometric fidelity The tensile structure must approximate the
target surface within a specified tolerance.

Since patches must be mapped to 2D, a certain degree of de-
velopability is inherently required. To encourage this property, it
is advantageous for the seams between patches to align with the
principal curvature directions of the surface.

Our pipeline takes as input a target surface and a cross field,
a smooth 4-rosy tangent vector field aligned with the principal
curvature directions of the input surface [Vaxman et al. 2017] (see
Figure 2.a).

The algorithm proceeds by iteratively inserting a set of uniformly
distributed paths over the surface. These paths subdivide the surface
into a collection of patches (see Section 5). Each path is aligned with
one of the directions defined by the cross field and may either
form closed loops or terminate at the boundary of the input mesh.
Paths are allowed to intersect orthogonally but not tangentially.
The resulting patches are bounded by a small number of corners
(typically between 3 and 6), to keep their geometry simple and
suitable for fabrication.

At each iteration, after inserting a new path, we evaluate the
quality of the current patch layout by simulating the corresponding
tensile structure. This evaluation is performed every time the layout
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Fig. 2. Processing pipeline overview: (a) Starting from a triangle mesh equipped with a smooth curvature-aligned cross field; (b) we compute an optimal patch

layout that accounts for the physical simulation of the resulting tensile structure; (c) we refine the anchor point positions through a final optimization step to
minimize the deviation from the target surface and enhance developability, the approximation error is visualized, with red indicating 5% of the bounding box
diagonal; (d) optionally, we compute an optimized cable configuration to ensure structural equilibrium.

is updated through the addition or removal of a path. The first
step verifies that all patches satisfy the previously defined local
topological constraints: each patch must be homeomorphic to a disk,
possess a single boundary component, and must not self-intersect
or be self-connected.

If all patches pass the topological validation, we proceed to com-
pute the optimal tensile structure corresponding to the current
layout (see Sections 4.1 and 4.2). We then mark any patches that
fail to satisfy our geometric constraints: the approximation error
with respect to the target surface must remain below a predefined
threshold; each patch must admit a bijective mapping to 2D; and
the distortion of this mapping must stay within a specified limit to
ensure the patch is nearly developable. The algorithm continues by
selectively refining the layout, inserting new paths within problem-
atic patches until all topological and geometric constraints are met.
Once the patch insertion process is complete, we perform a cleanup
phase where redundant paths are removed. Each candidate path
is removed only if the resulting layout still satisfies all constraints
required for a valid tensile structure (see Figure 2.b).

Finally, we perform a global optimization of the anchor point
positions to minimize the distance between the resulting tensile
surface and the original target surface (see Figure 2.c). In this step, we
also derive the final 2D mapping of the patches ready for fabrication.
In a subsequent optional step, we compute the layout of cables and
supports required to maintain the structure in a physically stable,
tensioned equilibrium (see Section 6.1) (see Figure 2.d). The finalized
patches are then flattened, producing a 2D layout ready for cutting
and assembly into the final tensile structure.

4 Patch Validation and Tensile Structure Derivation

To guide the patch decomposition process, we must continuously
assess whether the current patch layout is valid—that is, whether
it satisfies the required topological, geometric, and physically-based
constraints. As outlined in Section 3.1, patches must first fulfill a
set of local topological properties. In addition, geometric validity
is evaluated by simulating the corresponding tensile structure and
verifying both its approximation quality and its physical fabricabil-
ity.
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4.1 Tensile Surface as Membrane

A key observation in characterizing tensile structures is that a sur-
face under tension behaves as a membrane—a configuration in which
internal forces are purely in-plane, and bending stiffness is neglected.
In such configurations, the geometry of the surface is dictated by
static equilibrium conditions at every vertex. Each interior vertex
can be expressed as a convex linear combination of its neighbors,
reflecting the smooth and energy-minimizing nature of membrane
surfaces. This behavior is captured numerically via a Laplacian-like
smoothing process [Botsch and Sorkine 2008] that converges to
an equilibrium state determined by a set of boundary constraints
(modelled as fixed anchor vertices).

Given a triangle mesh, defined by a set of vertices V and triangular
faces F if we design a subset A C V as the set of anchor vertices,
then the remaining set M = V' \ A will consists of membrane vertices.
To define the geometric configuration of the membrane, we impose
the following constraint on each membrane vertex m; € M in a
least-squares sense,

v = Z WijVj (1)
JEN(D)
Here, N (i) denotes the 1-ring neighborhood of vertex m;, and
wij; are weights. In our implementation we use cotangent weights
which remain fixed during the optimization.

Surface Approximation. In addition to enforcing the geometric
condition of a membrane, we also aim at minimizing the deviation
from the target surface. Let VEargEt denote the projection of vertex
v; € V onto the target surface. We define the approximation energy
as

2
target
Eapprox = Z ”Vi -Vv; &
v;eV

@

As computing the exact projection of a vertex onto the target
surface cannot be efficiently performed within the optimization
loop, we instead consider the position of each vertex in the target
shape. While some anchor vertices are constrained (e.g., those fixed
to the ground), we allow others to move freely during optimization
to improve the overall approximation quality. This flexibility often



Fig. 3. The effect of tensile structure computation (right) on a given patch
decomposition (left).

results in a better fit between the simulated membrane surface and
the target geometry (see Figure 2.c).

Anchor Selection. To allow adaptive anchor placement, we intro-
duce binary variables b; € {0, 1}, where b; = 1 indicates that v; is
selected as an anchor. The anchor set A is thus defined by the subset
of vertices with b; = 1. To encourage sparsity in anchor usage, we
include a regularization term

Eanchor = Wanchor Z bi , (3)
v; eV
where wynchor 1s @ weight that penalizes the use of multiple anchor
points, promoting a sparser selection. For the examples used in this
paper, we set Wapnchor to 10. To avoid degenerate solutions in which
no anchors are chosen, we enforce a maximum allowed deviation
from the target surface for each vertex v; € V as

target
Vig

ci=Jn-

— Smax < 0. )

Optimization Loop. We find the positions V = (vy, - - - , v;,) subject
to the constraints of 1 and anchor points B = (by, - - - , b) of a tensile
surface by solving the following optimization problem

arg min Eapprox + Eanchor 8t Ci <0,Vo; €V . (5)

V.B
This optimization is re-evaluated every time the patch layout is
modified during decomposition. To improve efficiency, we restrict
the anchor candidate set to a uniformly sampled subset of vertices
between patch corners, including the corners themselves as potential
anchors. The effect of this tensile structure derivation is shown in
figure 3.

4.2 Developability Optimization

Once we have verified that the patch layout satisfies the topological
conditions and derived an initial solution, we must also ensure
that each patch can be mapped onto the 2D plane with minimal
distortion. This is necessary to allow the patches to be fabricated
from flat sheets of fabric and assembled as prescribed by the verified
design. The process consists of two alternating steps:

Parameterization For each patch, we compute a locally injec-
tive 2D parameterization using As Rigid As Possible (ARAP)
parameterization [Sorkine et al. 2004], which produces a pla-
nar embedding that approximates a developable unfolding.
This embedding defines the rest lengths for the mesh edges
within each patch.
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(@)

Fig. 4. The effect of the two-step flattening and simulation process: (a) The
initial mesh after the tensile membrane computation, color shows the initial
distortion of the derived 2D mapping (red corresponds to 1% of stretching);
(b) The result after the developability optimization step; (c) The final patch
layout.

HE

Fig. 5. We formulate the problem of tracing field-aligned paths as finding
minimal paths over a graph that assigns four nodes to each mesh vertex,
one for each cross-field direction (left). Edges in the graph connect nearby
nodes with matching tangent directions (right).

Simulation Next, we simulate the physical behavior of the
surface using Position-Based Dynamics [Miiller et al. 2007],
treating the flattened patches as inextensible materials under
tension (using the bending constraint and distance constraint
as explained in the original paper). Each edge’s target length
corresponds to the rest length resulting from parameteriza-
tion step. Although the resulting configuration is not per-
fectly developable, the simulation converges to a shape with
minimal in-plane stretching.

These two steps are repeated until the distortion in the parameteri-
zation (measured as edge stretch) falls below a predefined threshold.
At the end of the process, we consider a mapping valid if it is bijec-
tive and the distortion remains within the prescribed limits. Patches
that do not satisfy these criteria are marked as unsolved and will be
further refined with additional paths.

The effect of this refinement step is illustrated in Figure 4. As
shown, it typically results in only minor deformations in 3D while
significantly improving developability.

5 Patch Layout Generation

We begin by computing a cross field aligned with the principal
curvature directions of the input surface, using the method proposed
in [Diamanti et al. 2014]. To trace the paths that define the patch
layout, we adopt the approach introduced in [Nuvoli et al. 2019;
Pietroni et al. 2021]. Specifically, following the intuition of [Campen
et al. 2012], we construct a graph with four nodes for each vertex
of the input mesh, where each node corresponds to one of the
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four directions of the cross field. Edges are added between adjacent
vertex-nodes according to the field’s parallel transport (see Figure 5
for illustration). In this setup, tracing paths reduces to computing
shortest paths in the graph.

Path Insertion. We first sample a set of seed nodes on the surface
to define a collection of candidate paths. Following a greedy strategy
similar to [Livesu et al. 2020], we iteratively insert the path that
is furthest from previously inserted paths and from the boundary
of the mesh. Following this insertion order, and as outlined in Sec-
tion 3.1, we only add the paths that are necessary to satisfy our
topological, geometric, and physically based constraints . Only or-
thogonal intersections with existing paths are permitted; tangential
intersections are not allowed. As proposed in [Pietroni et al. 2016],
tangential intersections between paths are efficiently detected by
checking whether two paths pass through the same vertex in non-
orthogonal directions, which are encoded in the nodes of the graph.
The distance between a candidate path and previously inserted ones
is computed by averaging the distances between their respective
nodes. Since distances are measured in the graph domain, paths that
are far apart can still intersect orthogonally, while paths that run in
parallel tend to be considered close. This strategy promotes the for-
mation of well-shaped, evenly distributed patches that conform to
the topology of the underlying cross field. Intuitively, patches with
valence 3 or 5 form around singularities of corresponding index,
while regular regions of the mesh tend to form 4-valence patches.

Path Smoothing. Since paths are traced over mesh vertices, they
can exhibit staircase-like artifacts due to discretization. To alleviate
this issue, we apply a smoothing step after each path is inserted.
This operation is also extended to neighboring paths. Smoothing is
performed in the tangent space along each path, and the smoothed
positions are then projected back onto the original surface.

Layout Updating. After each insertion, we update the patch layout
and verify whether the current configuration satisfies the topological
constraints described in Section 3.1. If the layout is valid, we proceed
to compute the corresponding tensile structure and its embedding in
the 2D plane. We then evaluate which patches satisfy the geometric
constraints. In the next insertion step, only candidate paths that lie
on unresolved patches are considered. An example sequence of path
insertions is shown in Figure 6 (left).

Final Path Layout Simplification. After all paths have been in-
serted, we simplify the layout by testing each path in reverse order
of insertion (to preserve even distribution). During this step, we
remove only those paths whose deletion does not violate any of the
topological or geometric constraints. The result of this simplification
is illustrated in Figure 6 (right).

6 Tensile Structure Finalization

Once the final decomposition is obtained, we perform a concluding
membrane optimization step by iteratively reducing the maximum
distance threshold dmax until the problem described in Section 4.1
no longer admits a valid solution. This process pushes the final
configuration to adhere as closely as possible to the target surface.
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As a final step, we flatten each patch and pack the resulting 2D
patterns, making them ready for fabrication.

6.1 Boundary Constraints

At the end of the previous step, we obtain a tensile structure com-
posed of nearly developable patches, which remains in equilibrium
when tensioned and anchored at a set of fixed points. These anchor
points can be physically implemented using supports that hold the
structure in place. In the context of architectural surfaces, this solu-
tion is particularly convenient for anchor points located on the mesh
boundary—especially those on the ground, which can be easily se-
cured. However, anchoring interior points requires the construction
of internal support structures to hold each anchor in position. While
feasible this approach may reduce interior volume of the structure.
In fact, many practical tensile structures employ external cables
to maintain tension and equilibrium without occupying interior
volume.

Automatic rope derivation. To adopt this solution, we introduce a
system of virtual ropes connected to a small set of support poles P,
where the size of the set can be user defined |P| < Py, selected
from boundary vertices. Each rope connects an anchor point a; to
apole p; € P at a variable attachment height h;;. However, not all
heights are feasible: to prevent intersections with the tensile surface,
we precompute for each pole-anchor pair (a;, p;j) a feasible height
interval (h?;in, h?jl.ax), within which the rope remains clear of the
mesh. For simplicity, we will use a single bounding interval in the
following, although multiple intervals may exist. We also associate
with each rope a non-negative variable t;; € Rx¢ representing the
tension in the rope. The goal is to compute a minimal set of such
ropes and their corresponding tensions and heights to balance the
internal forces of the tensile structure.

The optimization objective is twofold:

(1) Ensure that the sum of rope tensions acting on each interior
anchor closely counterbalances the net force induced by the
mesh’s elastic energy at that point.

(2) Promote sparsity in the rope network by minimizing the
number of active ropes.

The resulting optimization problem can be formulated as

2
min Z Ztijdij_fi +AZ”IU‘”0
tij, hij 7 7 (6)

i
st 1;; >0 and RS < hyj < min(AS hma) -

Here, f; is the net force acting on anchor point i, derived from the
mesh’s energy, and d;; is the unit direction vector from anchor a; to
pole p; at height h; ;. The £,-norm encourages sparsity by penalizing
the number of non-zero rope tensions. The constant A is a blending
factor that controls the trade-off between minimizing the number of
ropes and ensuring force equilibrium (for the examples in this paper
we set it to 0.5). In practice, this term is approximated using an ¢
relaxation or solved via a mixed-integer programming formulation
(an example or derivation of rope is shown in Figure 8). To prevent
excessively long ropes, particularly when the structure’s energy
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Fig. 6. The result of a few path insertion steps followed by the final layout simplification step.

acts primarily in the vertical direction, we impose a global upper
bound hpgx on all attachment heights and include the option to
add a pole in the center.

Note that this formulation does not guarantee force equilibrium
at every anchor point, as enforcing it strictly would likely require an
excessive number of supporting poles. To address this, we introduce
a threshold to control the residual force. If the resulting force at
an anchor exceeds this threshold, we add supporting poles. If the
number of added poles surpasses a predefined limit, we instead fix
the remaining anchors directly to the ground (see Figures 8.b and

2.d).

7 Results

We implemented our system on a Mac with an Apple M3 Pro, using
Eigen [Guennebaud et al. 2010] and libigl [Jacobson et al. 2018] as
the core geometry processing framework. We used Gurobi [Gurobi
Optimization, LLC 2024] to solve the mixed-integer and boolean-
constrained optimization problems described in Sections 4.1 and 4.2.
The total processing time for the models shown in the paper ranged
from 1 to 20 minutes. The main parameter controlling the final out-
put is the maximum allowed approximation error dpyax. An example
of different outcomes resulting varying this pentameter is shown in
Figure 7.

Figure 11 show a variety of input architectural models processed
by our system. In the examples of Figure 12, we also enforced sym-
metry in the final shape, a feature often desirable in architectural
applications. Figure 8 illustrates several examples where the tensile
surface is supported using ropes, poles, or direct ground anchor-
ing. Table 1 summarizes statistics, including patch layout structure,
approximation error, and both maximum and average distortion
during patch flattening. Distortion is computed as the edge stretch
ratio per triangle.

Figure 9 illustrates the advantage of using a curvature-aligned
partitioning. This approach yields a simpler and more compact patch
decomposition, which typically leads to a better approximation of
the target surface.

Fabricated Examples. To fabricate our prototypes, we cut the flat-
tened patches from a slightly stretchable fabric and we 3D-printed
the supports and external poles when ropes were used. The fabric
pieces were sewn together along each shared edge, and the resulting
tensile structure was then placed on the supports and tensioned.
The full assembly process took between 120 and 200 minutes for
the examples shown in this paper. Figures 1 and 13 present the final
fabricated structures alongside the corresponding digital models

generated by our method. Figure 10 shows the approximation error
between our tensile structure and the 3D-scanned physical replica
presented in Figure 1. The average error amounts to 0.73% of the
bounding box diagonal. To further validate our method, we use
a discrete thin shell model [Grinspun et al. 2003] to simulate the
structure under gravity and report the maximum strain for each
triangle at static equilibrium state as in Figure 10 (right). From the
result, we can see a relatively large maximum strain, but this only
happens for triangles around the anchor points. The overall in-plane
strain is still very low.

8 Conclusion

We introduced a novel method to generate a tensile structure from
a given freeform input surface. Our tensile structure is composed
of a set of compact patches that remain in equilibrium when an-
chored at a limited number of points. The resulting form is both
compact and visually clean, making it feasible for fabrication and
suitable for practical applications. Our approach does not impose
any constraints on the input surface’s topology or geometry. We
demonstrated its versatility across a range of architectural examples.

To the best of our knowledge, this is the first method that presents
a complete pipeline for the automatic derivation of this type of
structure, which has seen increasing practical adoption in recent
years. We successfully fabricated several physical prototypes to
validate our approach.

Limitations and Future Work. One current limitation the proposed
framework is that, due to its computational complexity, our method
does not support real-time interaction. While the system could be
adapted to allow the user to manually fix anchor points or insert
seams, the results cannot yet be visualized instantaneously.

The initial membrane approximation of the target geometry en-
forces a tensile structure. However, during mapping of the fabri-
cation patches to 2D we do not explicitly enforce the tension re-
quirement. As can be seen on the fabricated samples this omission
has relatively small impact on the overall appearance. However, for
functional reasons it can be still interesting to enforce tension also
for the 2D patches. We leave this as an opportunity for future work.

In our experiments we focused on open meshes common in archi-
tectural context. While our algorithm supports watertight models
we find this class of meshes less relevant for the desired application
of inexpensive, easy to assemble shelters.

Our simulation assume isotropic material properties. Such an
assumption is suitable for stretchable fabrics since up to a certain
degree of stretch they behave as isotropic materials. However, after a

SA Conference Papers '25, December 15-18, 2025, Hong Kong, Hong Kong.
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Omax = 0.075

Omax = 0.05 Omax = 0.025

Fig. 7. Influence of the approximation error threshold Smax on the final layout.

Table 1. Summary statistics for each tensile structure example. The table
reports the number of patches (#P), the number of anchor points (#A), the
average and maximum geometric error (Avg E and Max E), measured as the
Hausdorff distance from the target mesh and expressed as a percentage of
the bounding box diagonal. It also includes the average (Avg D) and maxi-
mum (Max D) distortion of the 2D mapping, computed as the percentage
of edge stretch.

Fig #P #A AvgE MaxE AvgD
8.a 13 43 1.56 3.77 0.69
8b 10 24 1.17 4.03 0.69
8.c 19 30 3.41 8.44 0.36
1l.a 10 26 3.73 11.90 0.82
11.b 8 52 1.37 5.51 1.09
11.c 4 30 1.24 5.28 1.94
11d 2 14 1.82 5.83 2.64
12.a 4 15 2.24 5.34 2.14
12.b 6 18 2.79 9.69 0.78
12.c 4 25 0.69 4.98 1.9
12.d 10 68 2.09 10.47 0.78
13 top 12 25 0.23 0.50 0.47

13 bottom 8 15 0.03 0.07 0.32

SA Conference Papers '25, December 15-18, 2025, Hong Kong, Hong Kong.

L =3870,Err = 0.84

L =3859,Err =0.99

Fig. 9. Comparison between different partitioning strategies used to derive
the tensile structure: our field-based optimization (left) versus a Voronoi-
based partitioning (right), both processed using our membrane derivation
method. Each experiment reports the total seam length and the average
Hausdorff distance from the target surface.

certain threshold the exact behavior of a fabric can only be predicted
when considering the fiber orientation. Our numerical simulator
can be adapted to support fiber orientation similarly to [Eggler et al.
2024; Pietroni et al. 2022]. Such a change would introduce another
degree of freedom into the optimization, namely the orientation of
the patch. However, in practice we did not find this inclusion critical
as the stretch required by our optimized patches is well bellow the
natural stretch of common fabrics. An additional direction for future
research involves analyzing and optimizing the structural aspects
of the tensile structures derived from our method, with a focus on
the physical properties of the employed materials.



Fig. 10. Visualization of the Hausdorff distance between our tensile struc-
ture (left) and the physical replica (center). Red indicates a deviation of
2% relative to the bounding box diagonal. Right: Thin shell simulation of a
thick fabric (# = 1.2 mm, E = 120 MPa, v = 0.35, p = 250 kg/m?), yielding a
maximum strain of 10.6% and an average strain of 0.18%.

Our algorithm exhibits greedy behavior in the layout refinement
procedure. We provide a more detailed discussion in the supplemen-
tary material including the parameters. Future work could explore
improvements for this.
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Fig. 11. A gallery of examples and their target mesh.

Fig. 13. Tensile structures fabricated using our method based on architectural designs. The structures are supported only at the optimized locations. One
option is to construct pillars from the ground that hold the cloth in place (top row). For challenging designs, or to improve internal space we propose to
use tension strings (bottom row). Our method automatically identifies a sparse set of rods and strings that can be used to support the structure. The final
structures are close to the input target surfaces and posses high visual appeal associated with tensile structures.
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