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Fig. 1. Our method enables optimization-driven design of compliant mechanical systems with periodic large-amplitude motions. For this pair of dragon wings,
the initial design (a, b) exhibits only small oscillation response when driven by harmonic forcing at a frequency of 2.5𝐻𝑧. Our approach automatically finds
optimized design parameters (extra masses at the trailing edge of the wing) that lead to substantially increased amplitude (c, d).

We present a computational method for designing compliant mechanical
systems that exhibit large-amplitude oscillations. The technical core of our
approach is an optimization-driven design tool that combines sensitivity
analysis for optimization with the Harmonic Balance Method for simulation.
By establishing dynamic force equilibrium in the frequency domain, our
formulation avoids the major limitations of existing alternatives: it han-
dles nonlinear forces, side-steps any transient process, and automatically
produces periodic solutions. We introduce design objectives for amplitude
optimization and trajectory matching that enable intuitive high-level au-
thoring of large-amplitude motions. Our method can be applied to many
types of mechanical systems, which we demonstrate through a set of ex-
amples involving compliant mechanisms, flexible rod networks, elastic thin
shell models, and multi-material solids. We further validate our approach by
manufacturing and evaluating several physical prototypes.
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1 INTRODUCTION
From the seismic response of high-rise buildings, to the aeroelastic
stability of turbine blades, and to the micro-vibrations of energy
harvesting devices—understanding and controlling the behavior
of mechanical systems subject to periodic forcing is key to many
engineering applications. Designing for vibrations typically means
bracing against resonance, i.e., the strong increase in oscillation
amplitude that occurs when driving a system at its characteristic
frequency. Unless explicitly prevented, resonance can induce in-
creasingly large deformations that, ultimately, lead to failure. While
avoiding resonance is therefore often a main design goal, in this
paper we explore the design of flexible structures that exploit reso-
nance to produce periodic motion in the form of large-amplitude
oscillations.

Modeling Periodic Motion. Most real-world systems will reach a
stable steady state motion—a so called limit cycle—when driven by
a periodic force. However, before reaching its limit cycle, the system
goes through a transient process of non-periodic motion whose
length depends on the complexity as well as the elastic and viscous
properties of the system. One approach to computing limit cycles is
to simulate this transient process by numerically solving the equa-
tions of motion until some periodicity condition is met. However,
using such a time-domain approach as a basis for computing system
parameters that yield desired steady state behavior would require
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inverting a transient process of a priori unknown length, which is
computationally all but intractable.

Frequency-Domain Approaches. A more promising approach for
designing limit cycles is to use frequency-domain methods that
directly solve for the system’s steady state behavior without the
need for simulating the transient process. As another advantage,
periodicity is obtained by construction and does not have to be en-
forced explicitly. Arguably the most widely used frequency-domain
method for vibration analysis is Linear Modal Analysis (LMA) [Sha-
bana 1990]: based on the assumption of small-amplitude oscilla-
tions, the equations of motion are linearized around the origin and
transformed to frequency space using generalized Eigenvalue de-
composition. The resulting modal equations decouple and can be
solved efficiently to yield the approximate limit response of the
system to excitation at arbitrary frequencies. LMA is particularly
well suited when vibrations and resonance are to be avoided and,
hence, the assumption of small oscillations is valid. For compliant
mechanisms and other systems with large-amplitude oscillations
and finite rotations, however, nonlinearities play a critical role and
LMA is unable to predict the steady state behavior in such cases.

To embrace nonlinearities from the start, we build our approach
on the basis of the Harmonic Balance Method (HBM)—a nonlinear
frequency-domain method that extends to a wide range of vibration
problems [Krack and Gross 2019]. The basic idea of HBM is to project
the time-continuous equations of motion to a finite-dimensional
subspace spanned by a small number of trigonometric basis func-
tions. These nonlinear basis functions allow for efficient modeling
of nonlinearities in nodal positions, velocities, and forces.

Overview & Contributions. Using HBM as a basis, we propose an
optimization-based design tool that leverages sensitivity analysis to
automatically discover design parameters that best approximate tar-
get steady-state behavior. Our method is able to control steady-state
motion based on high-level user input by adjustingmass distribution,
stiffness, or shape parameters of the designs. By performing simula-
tion and design optimization directly in frequency space, ourmethod
avoids long transition times, the need for periodicity constraints,
and other difficulties associated with time-domain approaches. Our
method is furthermore general with respect to mechanical models,
and we present examples of planar mechanisms augmented with
elastic elements, rod networks, thin shells, and multi-material solids.
We demonstrate the capabilities of our method on a set of simulation
examples and real-world prototypes that include mechanical legs,
compliant mechanisms, and animatronic characters.

2 RELATED WORK
This work aims at designing real-world mechanical systems that
exhibit desired large-amplitude oscillations. To our knowledge, this
exact problem has not been considered before, but there are close
ties to several sub-fields of visual computing and engineering.

Designing Mechanical Motion. The problem of designing mech-
anisms that exhibit desired kinematics has received considerable
attention from the visual computing community in recent years
[Bächer et al. 2015; Coros et al. 2013; Thomaszewski et al. 2014;
Zhang et al. 2017]. Perhaps closest to our setting is the work by

Ceylan et al. [2013] who optimize for periodic motion of their char-
acters using a frequency-space formulation. However, their method
is purely kinematic and does not consider dynamics. Megaro et
al. [2017] and Takahashi et al. [2019] proposed optimization-based
design tools for mechanisms that are augmented with or partly
replaced by compliant elements. While these examples go beyond
pure kinematics, they did not consider dynamics. As one particu-
lar application, our method can be seen as a continuation of these
previous works toward the design of compliant mechanisms that
exhibit dynamic, periodic motion.

Few works from the graphics community on fabrication-oriented
design have considered dynamics so far. Notable exceptions include
the work by Chen et al. [2017], who propose a dedicated coarsening
approach for optimization-based design of flexible objects with dy-
namic motion and contact. Another example is the work by Bächer
et al. [2014], who design the mass distribution of rigid bodies in or-
der to obtain sustained rotational motion. However, neither of these
works considers periodic motion, forced vibrations, or resonance.

The work by Hoshyari et al. [2019] on motion control for robotic
characters is related to our effort in that it predicts oscillations
induced by external forcing. However, whereas their goal is to sup-
press vibrations by optimizing actuation parameters, we aim at
generating large-amplitude oscillations by optimizing for shape,
mass, and material parameters.

In order to create real-world animations of deformable characters,
Skouras et al. [2013] optimize for multi-material distributions and
the parameters of a string-based actuation system. While we also
leverage heterogeneous material distributions for motion control,
our actuation principle is based on resonance induced by harmonic
forcing.

Modal Subspaces for Animation. The idea of using modal sub-
spaces for efficient animation of flexible models in graphics goes
back to the early work of Pentland and Williams [1989]. Due to
the inherent inefficiency of linear modal bases to model large ro-
tational displacements, many works have proposed more efficient
alternatives using, e.g., modal derivatives [Barbič and James 2005],
higher-order derivative information [Hildebrandt et al. 2011], or
rotation-strain coordinates [Pan et al. 2015]. Adaptive basis selection
has also been considered [Hahn et al. 2014; Kim and James 2009].
Compared to the problem of constructing efficient linear bases

for large-deformation simulation, nonlinear bases have not received
much attention so far. An exception is the work of Fulton et al.
[2019], who use machine learning techniques to construct nonlinear
subspaces from simulation data. But besides the fact that none of
the above approaches aim at optimization, they are all time-domain
methods, meaning that they must simulate the entire evolution lead-
ing up to the steady-state behavior. By building on the Harmonic
Balance Method, our approach is able to sidestep the transient pro-
cess and thus directly operate on the steady-state behavior.

Audible Vibrations. Simulating vibrations is also of importance for
physics-based sound synthesis. For instance, Zheng et al. [2011] and
Bonneel et al. [2008] used LinearModal Analysis (LMA) to efficiently
generate sound for rigid body impact. To increase richness and
fidelity, nonlinear approaches have been investigated for vibrating
thin-shell structures [Chadwick et al. 2009; Cirio et al. 2018].

ACM Trans. Graph., Vol. 39, No. 6, Article 191. Publication date: December 2020.



A Harmonic Balance Approach for Designing Compliant Mechanical Systems with Nonlinear Periodic Motions • 191:3

In the context of fabrication-oriented design, LMA has been the
predominant approach so far; see, e.g., the works of Umetani et al.
[2010] and Bharaj et al. [2015] on metallophones. Another stream
of work in this context has investigated the simulation [Allen and
Raghuvanshi 2015] and design [Umetani et al. 2016] of wind instru-
ments and acoustic filters [Li et al. 2016]. While sound synthesis
is concerned with high-frequency, small-amplitude vibrations, we
consider the design of mechanical systems with low-frequency but
large-amplitude oscillations.

Nonlinear Vibrations in Engineering. The study of nonlinear vi-
brations is fundamental for structural dynamics, fluid structure
interaction, aeroelasticity, and many other fields of engineering.
As an extension of LMA beyond the linear regime, nonlinear nor-
mal modes are often used to analyze nonlinear dynamical phenom-
ena [Kerschen et al. 2009]. One approach to compute steady-state
behavior is to use time-domain integration schemes for simulating
the transient process of the system until stable, periodic motion is
obtained. An alternative approach that avoids computing the entire
transient process are shooting methods [Peeters et al. 2009] that
simulate only a single cycle while optimizing initial conditions and
period to obtain periodicity.

Instead of enforcing periodicity in the time domain, we leverage
the Harmonic Balance Method (HBM) to directly compute nonlinear
periodic motion in frequency space. HBM is a versatile approach
for nonlinear vibration analysis and has been widely used for many
applications including nonlinear circuits [Bandler et al. 1992], fluid
dynamics [Hall et al. 2013], and nonlinear mechanical systems in
general [Detroux et al. 2014]. Its basic principle is to represent
motion as a truncated Fourier series composed of periodic, trigono-
metric functions with different frequencies and phase offsets. Unlike
the shooting method which already requires optimization for com-
puting steady-state behavior, HBM only requires the solution of a
nonlinear root-finding problem. Moreover, once the steady-state
behavior for a given driving frequency has been obtained, solutions
for different inputs can be computed efficiently using numerical
continuation.
Besides its advantages for solving forward simulation problems,

HBM holds great promise for optimization-based design automation
in elasticity and aeroelasticity applications [Engels-Putzka et al.
2019]. Perhaps closest to our work, Dou and Jensen [2015] combine
HBM with sensitivity analysis to suppress vibrations in a simple
beam by minimizing the amplitude at resonance. While we follow
a similar methodology, our goal is not to suppress but to amplify
oscillations and to control large-amplitude motion. To this end, we
introduce amplitude and trajectory objectives that we integrate
with forward and inverse design tools based on sensitivity analysis.
Together, these tools enable interactive design space exploration as
well as fully-automated design optimization of compliant systems
with low-frequency, large-amplitude oscillations.

3 THEORY
Our optimization-based design tool builds on the Harmonic Balance
Method, a frequency-domain method for simulating the steady-state
behavior of nonlinear mechanical systems. We first lay out the parts

of the theory as relevant to our setting and briefly describe the
corresponding computational framework.

3.1 Equations of Motion in Frequency Space
To arrive at the frequency-domain formulation, we start with the
canonical equations of motion for a forced dynamical system in the
time domain,

M¥x + D ¤x = fint (x) + fext (x, 𝜔, 𝑡) , (1)

where x, ¤x, ¥x ∈ R3𝑛 denote nodal displacement, velocity, and accel-
eration, respectively. Furthermore, fint (x) is the nonlinear internal
force and fext (x, 𝜔, 𝑡) is the periodic external force with frequency
𝜔 . Finally,M denotes the mass matrix, D = 𝐷𝛼M + 𝐷𝛽K(x) is the
Rayleigh damping matrix, and

K(x) = 𝜕fint (x)
𝜕x

is the tangential stiffness matrix. To simplify the subsequent deriva-
tions, we separate linear and nonlinear terms as

M¥x + D̂¤x = f (x, ¤x, 𝜔, 𝑡) , (2)

where D̂ = 𝐷𝛼M and nonlinear forces are summarized as

f (x, ¤x, 𝜔, 𝑡) = fint (x) + fext (x, 𝜔, 𝑡) − 𝐷𝛽K(x) ¤x . (3)

Discretization. At the steady-state solution, positions and forces
are periodic functions.We approximate these time-domain functions
in frequency-space as finite Fourier series

x(𝑡) ≈ c𝑥0 +
𝑁𝐻∑︁
𝑘=1

(
s𝑥
𝑘

sin(𝑘𝜔𝑡) + c𝑥
𝑘

cos(𝑘𝜔𝑡)
)

(4)

f (𝑡) ≈ c𝑓0 +
𝑁𝐻∑︁
𝑘=1

(
s𝑓
𝑘

sin(𝑘𝜔𝑡) + c𝑓
𝑘

cos(𝑘𝜔𝑡)
)

(5)

truncated to the𝑁𝐻 -th harmonic. In the above expressions, s∗
𝑘
∈ R3𝑛

and c∗
𝑘
∈ R3𝑛 are the vectors of Fourier coefficients decorated with

𝑥 and 𝑓 superscripts for positions and forces, respectively. Velocities
v(𝑡) follow through direct differentiation of (4) and, hence, require
no additional coefficients. We gather position and force coefficients
into vectors of size (2𝑁𝐻 + 1) · 3𝑛 as

z = [(c𝑥0 )
𝑇 (s𝑥1 )

𝑇 (c𝑥1 )
𝑇 . . . (s𝑥𝑁𝐻

)𝑇 (c𝑥𝑁𝐻
)𝑇 ]𝑇 , (6)

b = [(c𝑓0 )
𝑇 (s𝑓1 )

𝑇 (c𝑓1 )
𝑇 . . . (s𝑓

𝑁𝐻
)𝑇 (c𝑓

𝑁𝐻
)𝑇 ]𝑇 . (7)

Since the force f (𝑡) in (3) is a nonlinear function of position and
velocity, its Fourier coefficients b are functions of the position coef-
ficients z and we write b = b(z, 𝜔).

Substituting (4) and (5) into (2) and balancing the harmonic terms
with a Galerkin projection (see Appendix A for details) yields the
following set of nonlinear equations in the frequency domain,

h(z, 𝜔) ≡ A(𝜔)z − b(z, 𝜔) = 0 , (8)

where A = diag(0,A1, . . . ,A𝑗 , . . . ,A𝑁𝐻
) is a square, block-diagonal

matrix of dimension (2𝑁𝐻 + 1) · 3𝑛 describing the linear dynamics
of the system. Each of the 6𝑛 blocks is defined as

A𝑗 =

[
−( 𝑗𝜔)2M − 𝑗𝜔D̂

𝑗𝜔D̂ −( 𝑗𝜔)2M

]
. (9)
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Eq. (8) is the frequency-domain version of (1), projected to a
finite-dimensional Fourier subspace. Once we find the root z∗ of
(8), we can convert it to the corresponding time-domain motion x∗

using inverse Fourier transformation.

3.2 Evaluation of Nonlinear Forces and Derivatives
We solve the system of nonlinear equations (8) using Newton’s
method. In every iteration, the solver requires the evaluation of b
and the Jacobian 𝜕h/𝜕z for a given driving frequency 𝜔 . Since the
elastic and viscous forces are nonlinear and often non-polynomial
functions of position and velocity, expressing them directly in fre-
quency space is difficult. An alternative approach is given by the
alternating frequency/time-domain (AFT) technique [Cameron and
Griffin 1989]. Using discrete Fourier transforms (DFT), motion is
first converted from frequency space to the time domain where
nonlinear forces are then evaluated and finally converted back to
the frequency domain as

z
DFT−1
−−−−−→ [x(𝑡), ¤x(𝑡)] −→ f(x, ¤x, 𝜔, 𝑡) DFT−−−→ b(z) . (10)

Let 𝑡𝑖 = 𝑖Δ𝑡 , 𝑖 = 1...𝑁 denote uniformly distributed samples in
the time domain with Δ𝑡 = 2𝜋

𝑁𝜔
and 𝑁 ≥ 2𝑁𝐻 + 1. We start by

evaluating (4) at the 𝑁 sample points to obtain the discrete time-
domain trajectory x̃ ∈ R𝑁 ·3𝑛 and corresponding sample velocities
ṽ. Due to the linearity of inverse DFT, we have

x̃ = Γ𝑥 z , and ṽ = Γ𝑣z , (11)

where Γ𝑥 and Γ𝑣 are sparse linear operators of size 3𝑛 · 𝑁 × (2𝑁𝐻 +
1) · 3𝑛. We then compute nonlinear forces for each sample point
according to the mechanical model (see Appendix E) and store the
result as f̃ = (f̃𝑇1 , ..., f̃

𝑇
𝑁
)𝑇 where f̃𝑖 = f (x̃𝑖 , ṽ𝑖 ) ∈ R3𝑛 is the vector of

nodal forces for sample 𝑡𝑖 . The time-domain forces are transformed
back to frequency space using DFT,

b = Γ−1
𝑓

f̃ , (12)

where Γ−1
𝑓

is again a sparse linear operator; see Appendix B. With
these transformations, the Jacobian of (8) is obtained as

𝜕h
𝜕z

= A − 𝜕b

𝜕f̃

(
𝜕f̃
𝜕x̃

𝜕x̃
𝜕z

+ 𝜕f̃
𝜕ṽ

𝜕ṽ
𝜕z

)
= A − Γ−1

𝑓

(
𝜕f̃
𝜕x̃

Γ𝑥 + 𝜕f̃
𝜕ṽ

Γ𝑣

)
(13)

where 𝜕f̃/𝜕x̃ and 𝜕f̃/𝜕ṽ can be computed analytically from (3).

3.3 Frequency Response Curves and Continuation
With the Jacobian (13) of the governing equations in hand, we can
use Newton’s method to compute the solution for a given driv-
ing frequency. In order to characterize the behavior of nonlinear
mechanical systems, however, it is usually necessary to compute
solutions for a range of driving frequencies, leading to so-called fre-
quency response curves that plot amplitude as a function of driving
frequency; see Fig. 2 for an example. Frequency response curves
summarize important characteristics of nonlinear mechanical os-
cillators in a compact form. In particular, they reveal the number,
location, amplitude, and sharpness of resonance peaks—quantities
that are of interest for analysis as well as design. We start by intro-
ducing our measure of amplitude, then proceed to the conditions

Fig. 2. Frequency response curve for a thin shell model. Amplitude is mea-
sured using the trajectory of a selected vertex shown in green. The inset
figures illustrate maximum-deflection configurations at 9 rad/𝑠 , 11 rad/𝑠
and 13 rad/𝑠 , respectively.

that characterize resonance, and finally explain how to compute
frequency response curves numerically using continuation.

Amplitude. To quantify motion magnitude, and to encourage
large-amplitude oscillation during design optimization, wemust first
develop a general definition of amplitude. For the one-dimensional
case, amplitude is defined as the maximum displacement over a
period of oscillation. While seemingly simple, this concept does
not readily generalize to higher dimensions and it translates into
computational difficulties: maximizing displacement means solv-
ing for zeroes of the velocity function, which is a trigonometric
root-finding problem with potentially many local extrema. To avoid
these difficulties, we instead quantify the magnitude of motion for
a given vertex x𝑖 as the distance traveled within one period,

𝐴𝑖 (z) =
∫ 𝑇

0
∥v𝑖 ∥ 𝑑𝑡 =

∫ 𝑇

0

√︃
(𝑣𝑥
𝑖
)2 + (𝑣𝑦

𝑖
)2 + (𝑣𝑧

𝑖
)2 𝑑𝑡 , (14)

where

𝑣
𝑗
𝑖
=

𝑁𝐻∑︁
𝑘=1

s𝑥 𝑗

𝑘
𝑘𝜔 cos (𝑘𝜔𝑡) − c𝑥 𝑗

𝑘
𝑘𝜔 sin (𝑘𝜔𝑡) . (15)

While this expression could be evaluated in frequency space through
quadrature, we simply compute the length of the piece-wise linear
trajectory in the time domain using the AFT scheme described
above.

Resonance. Having established a way of quantifying motion mag-
nitude, we can now make precise the conditions for resonance as a
local maximum of amplitude with respect to the driving frequency,

𝜔res = argmax
𝜔

𝐴(z(𝜔)) , (16)

where 𝜔res is the corresponding resonance frequency and z(𝜔) are
steady-state Fourier coefficients expressed as a function of the driv-
ing frequency. The map between z and𝜔 is implicitly given through
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the dynamic equilibrium condition h(z, 𝜔) = 0. As a necessary
condition for resonance, we require that

𝑑𝐴(z)
𝑑𝜔

=
𝜕𝐴(z)
𝜕z

𝑑z
𝑑𝜔

= 0 . (17)

Continuation. To avoid solving (8) from scratch every time when
computing frequency response curves, we use numerical continu-
ation to follow the path of the solution while changing the input
frequency. Each continuation step consists of a prediction step t𝑖 for
updating the current state [z𝑇

𝑖
, 𝜔𝑖 ]𝑇 , followed by a projection step

that enforces h(z, 𝜔) = 0. The prediction step requires the derivative
of (8) with respect to both the state z and the driving frequency 𝜔 .
The latter is obtained as

h𝜔 =
𝜕h
𝜕𝜔

=
𝜕A
𝜕𝜔

z − 𝜕b

𝜕f̃

𝜕f̃
𝜕𝜔

=
𝜕A
𝜕𝜔

z − Γ−1
𝑓

𝜕f̃
𝜕𝜔

(18)

where 𝜕f̃
𝜕𝜔 = −D𝛽K(x) 𝜕 ¤x𝜕𝜔 = −D𝛽K(x) Γ𝑣z𝜔 . Note that the derivative

of the external force with respect to 𝜔 is zero; cf. the derivation
of Γ and Γ−1 in Appendix B. The prediction step t𝑖 , tangent to the
response curve at [z𝑖 , 𝜔𝑖 ]𝑇 , is then determined as[

hz h𝜔
t𝑇
𝑖−1

]
t𝑖 =

[
0
1

]
, (19)

where hz is a shorthand for (13). The first line in the above equation
asks that the step should maintain force balance to first order. The
second condition requires the prediction step to have a positive dot
product with the previous step, thus preventing the continuation
scheme from going backwards. The resulting prediction step is then
used in conjunction with an arc-length control strategy [Seydel
2009] to compute an initial guess for Newton’s method.
To reliably track down resonance peaks, we use condition (17)

and monitor the sign of the gradient 𝑑𝐴
𝑑𝜔

. Whenever the sign changes
from negative to positive between two samples, we compute the
exact resonance frequency 𝜔res by solving (17). The Jacobian matrix
𝑑z
𝑑𝜔

required for this procedure can be computed through sensitivity
analysis on h(z, 𝜔) = 0.

4 COMPUTATIONAL DESIGN
Given an initial design, we would like to determine changes for
parameters such as shape, mass distribution, and driving frequency
such that the resulting steady-state motion best approximates a
given target behavior. To this end, we consider two design ap-
proaches: user-driven forward exploration of the design space and
optimization-driven inverse design.

4.1 Dynamical Equilibrium and Sensitivity
For both forward and inverse design, we must be able to predict
the change in steady-state behavior induced by a given change
in design parameters. To this end, we leverage the equilibrium
constraints as an implicit map between parameters and state: the
Fourier coefficients z must be a dynamic equilibrium configuration
for the design parameters p. We make this explicit by rewriting (8)
as

h(z, p, 𝜔) = A(p, 𝜔)z − b(p, z, 𝜔) = 0 . (20)
Since this relation must hold for every admissible choice of p, the
Fourier coefficients effectively become a function of the design

parameters, i.e., z = z(p). Moreover, any change to the parameters
will entail a corresponding state change such that the system is
again at equilibrium. More formally, we have

𝑑h
𝑑p

=
𝜕h
𝜕z

𝑑z
𝑑p

+ 𝜕h
𝜕p

= 0 , (21)

from which we obtain the so-called design sensitivity matrix as

S =
𝑑z
𝑑p

= − 𝜕h
𝜕z

−1 𝜕h
𝜕p

. (22)

The above equations form the basis of the forward and inverse
design tools that we describe next.

Rank of Constraint Jacobian. Eq. (20) provides exactly as many
constraints as there are degrees of freedom. In order for the con-
straint Jacobian in (22) to be invertible, the constraint gradients
must be linearly independent. Even if the Jacobian is non-singular,
numerical problems can still arise if the matrix is indefinite. While
the conditions on rank and definiteness cannot be guaranteed for all
configurations of nonlinear oscillators, we are only interested in sta-
ble steady-state solutions, which fulfill these properties by definition.
If transient rank-deficiency or indefiniteness are still encountered
(manifesting through failure of the LU solver or a large residual of
the linear system), we apply adaptive diagonal regularization until
a valid solution is found.

4.2 Forward Sensitivity Exploration
The sensitivity matrix provides an efficient tool for interactive ex-
ploration of the design space. For a given initial design p and corre-
sponding state z, we compute a first-order prediction for the new
equilibrium state as

z𝑝 = z + 𝑑z
𝑑p

Δp . (23)

Once the sensitivity matrix is computed, this prediction is instanta-
neous and thus enables interactive exploration of the design space
around a given set of parameters. For larger parameter changes,
however, the first-order prediction can become inaccurate, requiring
a full, nonlinear update. In our interface, the user can manually issue
such update commands, which entail re-simulation with the new
parameters and re-computation of the sensitivity matrix.
Besides changing parameters individually, we found it useful

to provide additional compound variables that change multiple
parameters simultaneously along the gradient of selected design
objectives—see Sec. 5.3 for an example.

4.3 Inverse Design
Even when aided by sensitivity information, forward design based
on manual exploration soon becomes unattractive as the number of
parameters increases. If design goals can be quantified, automatic
parameter optimization can be a very efficient and effective alterna-
tive. With the implicit relation between z and p defined as above,
we can cast design optimization as an unconstrained minimization
problem, where we aim to minimize an objective function 𝑓 (z(p), p)
that encodes various design goals as described below. Using Eq. (21),
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we obtain the objective gradient as

𝑑 𝑓

𝑑p
=
𝑑z
𝑑p

𝑇 𝜕𝑓

𝜕z
+ 𝜕𝑓

𝜕p
= − 𝜕h

𝜕p

𝑇 𝜕h
𝜕z

−𝑇 𝜕𝑓

𝜕z
+ 𝜕𝑓

𝜕p
. (24)

It is worth noting that this expression can be rearranged such that
only a single linear system needs to be solved. We use this gradient
in combination with L-BFGS-B [Byrd et al. 1995] to find parame-
ters that minimize the objective function while enforcing bound
constraints where applicable, e.g., positivity for mass values.

As we show in Sec. 5, HBM-based simulation and frequency-space
sensitivity analysis for optimization combine into an efficient tool
for inverse design. In order for this tool to be effective, however,
we must define objective functions that allow users to express their
design intents.

Trajectory Matching. An intuitive and direct way of specifying
motion goals is by prescribing target trajectories that selected nodes
should track. Given a time-domain target trajectory for a given
vertex 𝑘 as input, we first compute the corresponding Fourier coeffi-
cients ẑ = (ŝ, ĉ) using DFT. We then measure the distance between
current and target trajectories in frequency space as

𝑓Dist (z) =
𝑁𝐻∑︁
𝑖=1

3∑︁
𝑗=1

(
(s3𝑘+𝑗
𝑖

− ŝ𝑗
𝑖
)2 + (c3𝑘+𝑗

𝑖
− ĉ𝑗

𝑖
)2

)
, (25)

where the superscript selects individual components from the coef-
ficient vectors. The objective in its above form assumes that both
target and actual trajectory have the same phase offset, but this is
generally not the case. To eliminate phase dependence, we evaluate
(25) for different phase offsets and define the final objective value
as the smooth minimum over the individual distances, i.e.,

𝑓Track (z) =
∑𝑁−1
𝑖=0 𝑓Dist (z, 𝜙𝑖 )𝑒−𝛼 𝑓Dist (z,𝜙𝑖 )∑𝑁−1

𝑖=0 𝑒−𝛼 𝑓Dist (z,𝜙𝑖 )
, (26)

where 𝛼 is a parameter controlling the sharpness of the smooth
minimum function, 𝜙𝑖 = 𝑖 2𝜋

𝑁
are phase offsets, and 𝑓Dist (z, 𝜙) is the

same as in Eq. (25) but with the Fourier coefficients of the target
trajectory shifted by a phase offset 𝜙 .

Amplitude. Although the trajectory matching objective affords
some degree of amplitude control, we have seen in our experi-
ments that it can be difficult to obtain large amplitudes in this
way—arguably because the tracking objective is biased towards a
specific motion, rather than more general, large-amplitude oscilla-
tions. We therefore introduce an objective that explicitly aims to
maximize the magnitude of motion for user-selected nodes. Based
on the amplitude definition in Sec. 3.3, we define an amplitude
objective for vertex 𝑘 as

𝑓Ampl (z) = (𝐴𝑘 (z) −𝐴𝑘 )2 (27)

where 𝐴𝑘 is the target amplitude. Note that, besides optimizing for
specific, reachable values for the amplitude, we can also simply
encourage amplitude maximization by setting 𝐴 to an arbitrarily
large value. Likewise, with a straightforward modification of (14), it
is possible to optimize amplitude only along selected dimensions.
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Fig. 3. Trajectory error for HBM compared to ground truth time-domain
simulations. The plot shows error as a function of the number of harmonics
using damping coefficients as indicated.

5 RESULTS
We evaluate our method on a set of examples that highlight the
impact of our design objectives both in simulation and on actual
physical prototypes. We start by analyzing the accuracy of HBM
compared to ground truth time-domain simulations as well as a
linear frequency-space approach.

5.1 Analysis & Validation
Comparison with Newmark. One of the central advantages of

HBM is that it directly yields periodic steady-state solutions without
having to simulate the transient process of the system. In order to
analyze the accuracy of HBM in our setting, we compare to ground
truth simulations obtained using the Newmark integration scheme,
a time-domain method that is widely used for structural dynamics
and vibration analysis in general; see Appendix C for details.
To this end, we consider a fork-shaped thin shell oscillator (188

elements, 144 nodes) with one end driven by a periodic force while
the other two extremities are vibrating freely as shown in Fig. 2. To
measure the difference in steady state solution for Newmark and
HBM, we must first define an appropriate convergence criterion for
the time-domain method. We measure the difference in trajectories
between two successive periods as

𝑒𝑝 =

𝑁𝑁𝑀−1∑︁
𝑖=0

∥x(𝑡𝑝𝑁𝑁𝑀+𝑖 ) − x(𝑡 (𝑝+1)𝑁𝑁𝑀+𝑖 )∥ , (28)

where the subscripts of 𝑡∗ refer to time-step indices, 𝑝 denotes the
index of the period, and 𝑁𝑁𝑀 = 2𝜋

𝜔Δ𝑡 is the number of time steps
used to simulate a single period.

Using this error metric, Fig. 3 shows accuracy plots for different
driving frequencies and different numbers of harmonics. We use
𝑁𝑁𝑀 = 4096 for computing the step size and run the Newmark
simulation until the trajectory difference between two successive
periods satisfies 𝑒𝑝 < 1𝑒−7. It can be seen that the error is larger for
driving frequencies near resonance, which is at 𝜔res = 11.0 rad/𝑠
for this example (see Fig. 2). This observation is explained by the
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Fig. 4. Trajectory comparison between fabricated L-wing and HBM sim-
ulations at driving frequency of 2.0𝐻𝑧 with different numbers of sam-
pling points 𝑁𝐴𝐹𝑇 : physical prototype (a) and HBM simulation using (b)
𝑁𝐴𝐹𝑇 = 128, (c) 𝑁𝐴𝐹𝑇 = 64, and (d) 𝑁𝐴𝐹𝑇 = 32.

fact that near-resonance frequencies lead to larger amplitude mo-
tion. Nevertheless, using 𝑁𝐻 = 5 harmonics leads to sufficiently
good accuracy, and more terms yield virtually no improvements.
Additional analysis is given in Appendix D.

We furthermore conducted an experiment to analyze the impact
of the number of samples used to evaluate the nonlinear forces in
the time-domain using Eq. (3) for HBM. While a lower bound is
given by the Nyquist limit, as can be seen from Fig. 4, the effect of
using more samples is almost imperceptible. This visual impression
is confirmed by an additional quantitative analysis, showing that
the difference in Fourier coefficients is less than 1𝑒−10 in this case.
To summarize our analysis of HBM and comparison with New-

mark, we can conclude that, already with a small number of har-
monics and time-domain samples, HBM accurately captures the
nonlinear large-amplitude oscillation behavior that is the focus of
this work. We note that, when using 𝑁𝐻 = 5 and 𝑁𝐴𝐹𝑇 = 64 for this
example, HBM computes steady-state solutions one to two orders of
magnitude faster than time-domain methods. For the general case,
determining the optimal number of harmonics a priori is difficult.
However, we found the following strategy to work well in practice:
we first simulate using a small number of harmonics (e.g. 𝑁𝐻 = 3),
which we increase until the trajectory error between two successive
runs falls below a given threshold value. While this threshold needs
to be set by the user, setting it to a small fraction of the trajectory
length (e.g. 1𝑒−3) simplifies this task.
Before we present examples obtained using our optimization-

based designmethod, we briefly comment on an alternative frequency-
domain method.

Comparison with Linear Modal Analysis. In order to illustrate the
importance of incorporating nonlinearities in the simulation model,
we compare to Linear Modal Analysis (LMA), a frequency-space
approach based on a linearization of modal dynamics around the
rest state. As can be seen in Fig. 5, this first-order approximation
leads to significant in-plane distortions. This is not surprising, as
methods based on linearized deformation measures are known to in-
troduce artifacts for rotational displacements. Perhaps more severe,
however, is the fact that neither the resonance frequency nor the

9 rad/s 11 rad/s 13 rad/s
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Fig. 5. Frequency responses computed with LMA and HBM for different
driving frequencies with damping coefficients 𝐷𝛼 = 0.5 and 𝐷𝛽 = 0.00005.
Trajectory of a selected tip point (green) and color-coded maximum in-plane
stretch. For LMA, the maximum strains over one period for the three driving
frequencies are 0.655, 0.582, and 0.575. The corresponding values for HBM
(8.25𝑒−5, 1.00𝑒−4, and 8.50𝑒−5) are 4-5 orders of magnitude smaller.

motion at resonance are captured with acceptable accuracy. These
shortcomings effectively disqualify linear modal analysis as a basis
for design and optimization in the large-amplitude setting.

5.2 Measuring Damping Parameters
Damping parameters play an important role for the dynamics of a
mechanical system. To experimentally estimate damping coefficients
for a given design task, we first choose a simple real-world specimen,
e.g., the L-wing (see Fig. 4) for the thin shell model and the three-
link mechanism (see Fig. 8) for compliant mechanisms. We then
determine damping parameters such that the simulated steady-state
motion is as close as possible to the corresponding real-worldmotion.
Real-world trajectories are captured using off-the-shelf cameras for
side and back views. We then extract trajectories for selected key
points (such as wing tips) and use them to fit damping coefficients
for simulation.

5.3 Forward Design with Sensitivity Exploration
We demonstrate the sensitivity-based forward design approach de-
scribed in Sec. 4.2 on the mechanical character shown in Fig. 6.
This character consists of 10 links connected through 6 joints and 8
springs. During interactive design exploration, the goal for the user
is to obtain an understanding of the design space and to discover a
large-amplitude motion that makes for an appealing animation. We
drive the character by applying harmonic forcing to its feet, which
we initially choose to act in the vertical direction and in-phase. The
design parameters for this exploration are extra masses for each
node as well as the phase offset and amplitude for the forcing. In
addition to changing each parameter individually, we add controls
to the interface that change parameters simultaneously along the
gradient of the amplitude objective for selected nodes. This enables
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Fig. 6. Forward Design with Sensitivity Exploration illustrated on an ani-
matronic character. The initial design (left) exhibits only small oscillations
at the hands (indicated in green). After several steps of forward exploration,
the final design exhibits an expressive large-amplitude motion (right).

Fig. 7. Amplitude of the wing tip before (blue) and after (orange) optimiza-
tion for the dragon example. The dashed line indicates the driving frequency
(2.5𝐻𝑧) used during optimization.

convenient exploration along parameter-space directions that lead
to large motion amplification.
Having computed the initial frequency-response curve and the

sensitivity matrix, the user starts exploring motion variations by
changing design parameters. Our system then provides instant feed-
back on the predicted change in motion. As best seen in the accom-
panying video, this approach allows the user to quickly converge
towards a large-amplitude motion. Re-simulation with the new pa-
rameters exhibits only little deviation from the first-order prediction
shown during sensitivity exploration.

5.4 Optimization-Based Inverse Design
We demonstrate our optimization-driven approach on a set of ex-
amples that illustrate applications to a diverse range of mechanical
models and highlight the impact of our design objectives. For vali-
dation, we manufacture physical prototypes for several examples
and evaluate their performance.

Initial design Optimized design

Fig. 8. Trajectorymatching for the three-link compliant mechanism.
Initial design (left) and optimized design (right) with simulated (top) and
real-world (bottom) end-effector trajectories shown in green. The target
trajectory is shown in blue.

DragonWings. Our first example is a dragon model obtained from
a shape repository1 for which we aim to create large amplitude
oscillations for the wings such as to suggest flapping flight. The
body of the dragon is kept static while its wings are driven with
a servomotor that creates rotational motion with programmable
frequency and an amplitude of 40 degrees; see Fig. 1. We model
the wings using discrete shells [Grinspun et al. 2003] and fit elastic
material parameters as described in [Pabst et al. 2008] to match the
behavior of an FDM-printed PLA cantilever, from which we obtain
a Young’s modulus of 3.3𝐺𝑝𝑎 and a Poisson’s ratio of 0.36. With
the elasticity coefficients determined, we experimentally set viscous
parameters such as to minimize discrepancy between simulated and
real-world motion using the setup shown in Fig. 4. We use as design
parameters the masses of three points distributed along the trailing
edge of the wing.

We start by computing the frequency response curve for the initial
design, which shows only small-amplitude oscillations throughout
the range of 0.5 − 5.0𝐻𝑧 (blue curve in Fig. 7). We then employ our
amplitude objective to determine design parameters that lead to
motion amplification at 2.5𝐻𝑧. With an almost four-fold increase
in amplitude, the optimized design exhibits greatly improved per-
formance in simulation (orange curve in Fig. 7). This prediction
is confirmed by the manufactured prototypes for the two designs,

1https://www.thingiverse.com/thing:2714125
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Fig. 9. Running Ostrich. Four images from a running sequence of our ostrich model with two legs driven at 1.2𝐻𝑧 with a phase offset of half a period.

Initial design Optimized design

Fig. 10. Ostrich leg. Performance of initial (left) design and optimized
design (right) in simulation (top) and on the physical prototype (bottom).
Target and actual trajectories are shown in blue and green, respectively.

both of which show very good agreement with the corresponding
HBM simulations. It should be noted that, rather than just ampli-
fying the initial motion, the optimized trajectory at the wing tip is
quite different from the original one. Whereas manually finding a

sufficiently close target trajectory is a difficult task for the user in
this case, our amplitude objective provides the freedom needed to
automatically discover this large-amplitude motion.

Compliant Three-Link Mechanism. The ability to control large-
amplitude oscillations for nonlinear mechanical systems enables
new, efficient designs for robotics applications. We investigate the
potential of this approach on two compliant mechanisms. The first
design, shown in Fig. 8, is a simple three-segment chain augmented
with two elastic springs. We use custom-made springs with stiffness
coefficients of 70.2𝑁 /𝑚 and 16.0𝑁 /𝑚, respectively, and correspond-
ing rest lengths of 0.146𝑚 and 0.088𝑚. We drive the hip joint with
harmonic forcing in the vertical direction with an amplitude of 1𝑚𝑚

and a frequency of 3𝐻𝑧 such as to mimic the footfall frequency of
a fast quadrupedal walking gait [Moro et al. 2013]. To encourage
walking-like motion, we prescribe a corresponding target trajectory
for the bottom joint and optimize over joint masses, spring attach-
ment points, and link lengths. As can be seen from Fig. 8 (left), the
initial design shows little response. After optimization, however, the
mechanism closely tracks the desired trajectory, thus converting a
simple vertical input signal into a complex two-dimensional output
motion. It is worth noting that the design changes found by our
method are quite significant and leverage all available parameters.

Compliant Ostrich Leg. In our second mechanism example we
consider a complex ostrich leg inspired by the work of Cotton et al.
[2012]. Our leg design consists of 5 bars connected through 5 revo-
lute joints and 3 custom-made springs with stiffnesses of 41.86𝑁 /𝑚,
70.2𝑁 /𝑚, and 16.0𝑁 /𝑚 and corresponding rest lengths of 0.108𝑚,
0.146𝑚, and 0.088𝑚. The leg is driven by a servomotor located at
the hip joint that induces harmonic rotational oscillation in the at-
tached link with a frequency of 1.2𝐻𝑧 and amplitude of 40 degrees.
To generate large-amplitude oscillations that approximate the char-
acteristic running motion observed in ostriches, we prescribe target
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Fig. 11. For this animatronic wire character, we optimize the weights of
three additional masses such as to achieve large-amplitude oscillation of its
tail.

trajectories for the toe and ankle joints that we manually extracted
from real-world video footage.
As can be seen from Fig. 10 (left), the initial design produces

trajectories that correspond to simple, reciprocating motion along
a one-dimensional curve. After optimization, however, the motion
closely tracks the target trajectories for both ankle and toe (see Fig.
10 (right)). We optimize the mass for every joint to match the target
trajectory during optimization. As best seen in the accompanying
video, the optimized design also successfully reproduces the rotation
of the toe between swing and stance phases that characterizes the
real-world gait. We use the optimized design to build the physical
ostrich model shown in Fig. 9, whose two legs are driven at a phase
offset such as to mimic running motion.

Animatronic Wire Character. The HBM formulation extends to a
large range of mechanical models and materials. Our optimization-
driven approach is able to leverage this flexibility, which we demon-
strate on two additional examples that use multi-material solids and
elastic rods. Taking a result from Xu et al. [2018] as inspiration, we
design a wire character in the form of a fish as illustrated in Fig. 11.
We model this character using discrete elastic rods [Bergou et al.
2008] and the extension to networks described by Zehnder et al.
[2016]. In order to control the frequency response of the character,
we add three extra weights to the model whose mass we optimize
such as to maximize the amplitude at the tail for a driving frequency
of 2.0𝐻𝑧. For the physical prototype, we use standard aluminum
wire with a diameter of 1.1𝑚𝑚, a Young’s modulus of 69𝐺𝑃𝑎, and
density of 2.7𝑔/𝑐𝑚3. We use brass weights customized according to
the solution returned by the optimizer. Interestingly, the optimiza-
tion completely removed the weight attached to the tip of the tail.
To verify this somewhat counter-intuitive result, we experimented
with manually-designed mass distributions with roughly the same
total weight. As can be seen in the accompanying video, none of

Fig. 12. We optimize per-layer material stiffness for this solid such as to
maximize the amplitude of the selected vertex when driving the top face
with harmonic rotational excitation at 2.0𝐻𝑧.

these alternatives is able to amplify the input motion, whereas the
optimized design produces large-amplitude oscillation as predicted
in simulation. We conclude that, even for seemingly simple cases,
manually finding parameters that lead to large-amplitude oscilla-
tions at the designated driving frequency can be very challenging.
Our optimization-based approach removes this burden from the
user.

Multi-material Solid. We investigate applications of our approach
to material optimization for viscoelastic solids undergoing nonlin-
ear vibrations. Our setup consists of an inverted T-shaped model
shown in Fig. 12, whose upper face we drive through harmonic ro-
tational excitation. The solid is structured vertically into 7 layers of
homogeneous material, each of which can have different viscoelastic
properties. For the inverse design problem, we aim to optimize the
Young’s modulus for each layer such that the amplitude of a selected
node on the bottom extremity is maximized under a given driving
frequency of 2.0𝐻𝑧. The per-layer material assignment found by
the optimization successfully amplifies the motion by a factor of
more than 4.

Eiffel Tower. Inspired by the work of [Skouras et al. 2013], we
consider a material optimization problem for the Eiffel tower model
show in Fig. 13. We actuate the base of the model using harmonic
driving in horizontal direction. We use 2D constant strain triangle
elements with an St.Venant-Kirchhoff material for simulation, and
optimize for per-element stiffness coefficients such as to maximize
the amplitude of the top of the tower at 2.0𝐻𝑧. The optimized design
exhibits an increase in amplitude by a factor of more than 50.

5.5 Statistics & Additional Validation
Performance & Statistics. All examples run on a machine with an

Intel Core i9-7900X 3.3GHz processor and 32 GB of RAM. Statistics
are given in Tab. 1.

Constraint Violations. For the simulation of compliant mecha-
nisms, we use stiff penalty terms to enforce angular and distance
constraints for rigid joints and links. To analyze the validity of this
approach, we monitored constraint violations, i.e., the change in
angles of rigid joints and link lengths. We plot the corresponding
maximum values as a function of time in Fig. 14, from which it can
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Fig. 13. Material optimization on an Eiffel Tower model. For the initial
design with homogeneous material (left), the amplitude at the tip is almost
the same as for the driving signal. After optimizing for per-element stiffness
values, the tip amplitude is substantially increased (right).

Table 1. Statistics for inverse design examples. The columns list num-
bers of degrees of freedom (𝑁𝐷𝑜𝐹 ), harmonics (𝑁𝐻 ), sampling points
(𝑁𝐴𝐹𝑇 ), parameters (𝑁𝑝 ), iterations required for convergence (𝑁𝑖𝑡 ), as well
as the total time spent on optimization.

Example 𝑁𝐷𝑜𝐹 𝑁𝐻 𝑁𝐴𝐹𝑇 𝑁𝑝 𝑁𝑖𝑡 time [s]
Dragon 780 8 64 3 12 1098.09
Three-Link Leg 8 8 64 16 146 34.89
Ostrich Leg 14 14 64 7 128 163.98
Fish 187 8 64 3 46 456.96
3D Solid 918 8 64 7 10 7926.43
Eiffel Tower 658 8 64 525 150 5534.82

be seen that constraint violations are small for all three mechanism
examples.

As another potential concern known from time-domain methods,
stiff penalty terms can give rise to numerical damping when using
lower-order implicit integration methods. While we cannot guaran-
tee that our HBM simulations are free from this effect, they closely
track the Newmark solutions which are known to exhibit very little
numerical dissipation.

Feasible Regions of Design Space. Understanding and navigating
the space of feasible dynamics for a given input model is crucial for
successful design. Our inverse design tool can be used to answer
the question whether a given motion is achievable, and one positive
answer is often enough to fulfill the user’s intent. However, if the
desired motion is infeasible, our method will return a design whose
motion is, at least locally, as close as possible to the target behavior.
If deviations are substantial, however, the solution computed in this
waymight not be subjectively optimal or even acceptable for the user.
In such cases, finding good compromises requires further design
space exploration. While our method does not offer an explicit
representation of the space of feasible motions, if model complexity
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Fig. 14. Maximum error of constraints violation.We use a penalty stiff-
ness of 1𝑒7 and 𝑁𝐴𝐹𝑇 = 64 time-domain samples for these three compliant
mechanism examples. Each curve shows the maximum error (change in an-
gle/length divided by corresponding original value for angular and distance
constraints) over all constraints for each example within a period. It can be
seen that constraint violations remain below 2𝑒−3% at all times for all cases.

allows for it, our interactive tool provides an efficient way to explore
the possibilities and limitations of a given input model.

6 LIMITATIONS & FUTURE WORK
We presented an optimization-driven frequency-space approach
for designing mechanical systems that exhibit desired nonlinear
oscillations. Our results indicate that Harmonic Balance paired with
Sensitivity Analysis is indeed an efficient and effective combination
that enables the construction of powerful forward and inverse design
tools.

There are several limitations of our method that we briefly discuss
below along with other potential directions for future research. If
constraints are present in the mechanical system, the truncated
Fourier series will generally not satisfy them exactly. This would
be the case, e.g., when modeling mechanisms as articulated multi-
body systems. Nevertheless, to satisfy the requirements of a specific
application, constraint violations can be made arbitrarily small by
using a sufficiently large number of harmonics.

Using our amplitude objective, we found it unnecessary to explic-
itly enforce resonance in order to generate large-amplitude motion—
and the designs that our method discovered nevertheless proved
to be at or close to resonance peaks. Other applications, however,
require explicit control over resonance peaks and it would be inter-
esting to extend our formulation in this direction.

We use relatively simple constitutive models for both elastic and
viscous material behavior. While our damping model does not ex-
plicitly account for air drag, the mass contribution in the Rayleigh
damping model emulates this effect to some extent. This choice is
justified for problems in which air drag is insignificant, but other
applications might require more accurate models.
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In our examples, we have not tried to generate periodic motions
that include contact or friction. However, HBM can be extended
to handle these effects [Krack et al. 2017] and it would be worth-
while exploring their integration in our optimization-based design
approach. There are many other aspects of nonlinear vibrations that
we deliberately chose to ignore in this work, including bifurcations,
period doubling, and internal resonance. Nevertheless, incorpo-
rating these phenomena would increase the range of mechanical
systems that can be designed with our approach.

The computational burden of ourmethod depends on the complex-
ity of themodel, since eachmesh vertex is endowedwith 3· (2𝑁𝐻 +1)
Fourier coefficients. While model complexity might necessitate a
large number of vertices, the low-frequency oscillations that we
aim at are typically confined to a low-dimensional, albeit nonlinear,
subspace. Extending our method towards nonlinear subspaces of
frequency-space is a promising direction for future research.
We have shown applications of our approach to mechanical leg

designs. To be useful for robotics applications, however, the weight
carried by the legs (robot body and additional payload) must be
accounted for during design. Another interesting direction would
be to simultaneously optimize for different driving frequencies such
as to adapt leg motion according to running speed.

ACKNOWLEDGMENTS
We would like to thank Yin Wang for helping with the compli-
ant mechanisms and the anonymous reviewers for their valuable
comments. This work was supported by the Discovery Grants Pro-
gram and the Discovery Accelerator Awards program of the Natural
Sciences and Engineering Research Council of Canada (NSERC).
Computing and manufacturing equipment has been funded through
an infrastructure grant from the Canada Foundation for Innova-
tion (CFI). This project also received funding from the European
Research Council (ERC) under the European Union’s Horizon 2020
research and innovation program (grant agreement No. 866480).
Jonas Zehnder was supported by the Google Excellence Scholar-
ships program.

REFERENCES
Andrew Allen and Nikunj Raghuvanshi. 2015. Aerophones in Flatland: Interactive

Wave Simulation of Wind Instruments. ACM Trans. Graph. 34, 4, Article 134 (July
2015), 11 pages. https://doi.org/10.1145/2767001

Moritz Bächer, Stelian Coros, and Bernhard Thomaszewski. 2015. LinkEdit: Interactive
Linkage Editing Using Symbolic Kinematics. ACM Trans. Graph. 34, 4, Article 99
(July 2015), 8 pages. https://doi.org/10.1145/2766985

Moritz Bächer, Emily Whiting, Bernd Bickel, and Olga Sorkine-Hornung. 2014. Spin-It:
Optimizing Moment of Inertia for Spinnable Objects. ACM Trans. Graph. 33, 4,
Article 96 (July 2014), 10 pages. https://doi.org/10.1145/2601097.2601157

J. W. Bandler, R. M. Biernacki, and S. H. Chen. 1992. Harmonic balance simulation
and optimization of nonlinear circuits. In [Proceedings] 1992 IEEE International
Symposium on Circuits and Systems, Vol. 1. 85–88 vol.1. https://doi.org/10.1109/
ISCAS.1992.230008

Jernej Barbič and Doug L. James. 2005. Real-Time Subspace Integration for St. Venant-
Kirchhoff Deformable Models. ACM Trans. Graph. 24, 3 (July 2005), 982–990. https:
//doi.org/10.1145/1073204.1073300

Miklós Bergou, Max Wardetzky, Stephen Robinson, Basile Audoly, and Eitan Grinspun.
2008. Discrete Elastic Rods. In ACM SIGGRAPH 2008 Papers (Los Angeles, California)
(SIGGRAPH ’08). Association for Computing Machinery, New York, NY, USA, Article
63, 12 pages. https://doi.org/10.1145/1399504.1360662

Gaurav Bharaj, David I. W. Levin, James Tompkin, Yun Fei, Hanspeter Pfister, Wojciech
Matusik, and Changxi Zheng. 2015. Computational Design of Metallophone Contact
Sounds. ACM Trans. Graph. 34, 6, Article 223 (Oct. 2015), 13 pages. https://doi.org/
10.1145/2816795.2818108

Nicolas Bonneel, George Drettakis, Nicolas Tsingos, Isabelle Viaud-Delmon, and Doug
James. 2008. Fast Modal Sounds with Scalable Frequency-Domain Synthesis. ACM
Trans. Graph. 27, 3 (Aug. 2008), 1–9. https://doi.org/10.1145/1360612.1360623

Richard H Byrd, Peihuang Lu, Jorge Nocedal, and Ciyou Zhu. 1995. A limited memory
algorithm for bound constrained optimization. SIAM Journal on scientific computing
16, 5 (1995), 1190–1208.

TM Cameron and JH Griffin. 1989. An alternating frequency/time domain method
for calculating the steady-state response of nonlinear dynamic systems. Journal of
applied mechanics 56, 1 (1989), 149–154.

Duygu Ceylan, Wilmot Li, Niloy J. Mitra, Maneesh Agrawala, and Mark Pauly. 2013.
Designing and Fabricating Mechanical Automata from Mocap Sequences. ACM
Trans. Graph. 32, 6, Article 186 (Nov. 2013), 11 pages. https://doi.org/10.1145/
2508363.2508400

Jeffrey N Chadwick, Steven S An, and Doug L James. 2009. Harmonic shells: a practical
nonlinear sound model for near-rigid thin shells. ACM Trans. Graph. 28, 5 (2009),
119–1.

Desai Chen, David I. W. Levin, Wojciech Matusik, and Danny M. Kaufman. 2017.
Dynamics-Aware Numerical Coarsening for Fabrication Design. ACM Trans. Graph.
36, 4, Article 84 (July 2017), 15 pages. https://doi.org/10.1145/3072959.3073669

Gabriel Cirio, Ante Qu, George Drettakis, Eitan Grinspun, and Changxi Zheng. 2018.
Multi-scale simulation of nonlinear thin-shell sound with wave turbulence. ACM
Transactions on Graphics (TOG) 37, 4 (2018), 110.

Stelian Coros, Bernhard Thomaszewski, Gioacchino Noris, Shinjiro Sueda, Moira For-
berg, Robert W. Sumner, Wojciech Matusik, and Bernd Bickel. 2013. Computational
Design of Mechanical Characters. ACM Trans. Graph. 32, 4, Article 83 (July 2013),
12 pages. https://doi.org/10.1145/2461912.2461953

S. Cotton, I. M. C. Olaru, M. Bellman, T. van der Ven, J. Godowski, and J. Pratt. 2012.
FastRunner: A fast, efficient and robust bipedal robot. Concept and planar simulation.
In 2012 IEEE International Conference on Robotics and Automation. 2358–2364.

T. Detroux, L. Renson, and G. Kerschen. 2014. The Harmonic Balance Method for
Advanced Analysis and Design of Nonlinear Mechanical Systems. In Nonlinear
Dynamics, Volume 2, Gaetan Kerschen (Ed.). Springer International Publishing,
Cham, 19–34.

Suguang Dou and Jakob Søndergaard Jensen. 2015. Optimization of nonlinear structural
resonance using the incremental harmonic balance method. Journal of Sound and
Vibration 334 (2015), 239–254. https://doi.org/10.1016/j.jsv.2014.08.023

Anna Engels-Putzka, Jan Backhaus, and Christian Frey. 2019. Forced Response Sensitiv-
ity Analysis Using an Adjoint Harmonic Balance Solver. Journal of Turbomachinery
141, 3 (01 2019). https://doi.org/10.1115/1.4041700 031014.

Lawson Fulton, Vismay Modi, David Duvenaud, David I. W. Levin, and Alec Jacobson.
2019. Latent-space Dynamics for Reduced Deformable Simulation. Computer
Graphics Forum (2019). https://doi.org/10.1111/cgf.13645

Eitan Grinspun, Anil N Hirani, Mathieu Desbrun, and Peter Schröder. 2003. Discrete
shells. In Proceedings of the 2003 ACM SIGGRAPH/Eurographics symposium on Com-
puter animation. Eurographics Association, 62–67.

Fabian Hahn, Bernhard Thomaszewski, Stelian Coros, RobertW. Sumner, Forrester Cole,
Mark Meyer, Tony DeRose, and Markus Gross. 2014. Subspace Clothing Simulation
Using Adaptive Bases. ACM Trans. Graph. 33, 4, Article 105 (July 2014), 9 pages.
https://doi.org/10.1145/2601097.2601160

Kenneth C. Hall, Kivanc Ekici, Jeffrey P. Thomas, and Earl H. Dowell. 2013. Harmonic
balance methods applied to computational fluid dynamics problems. International
Journal of Computational Fluid Dynamics 27, 2 (2013), 52–67. https://doi.org/10.
1080/10618562.2012.742512 arXiv:https://doi.org/10.1080/10618562.2012.742512

Klaus Hildebrandt, Christian Schulz, Christoph Von Tycowicz, and Konrad Polthier.
2011. Interactive Surface Modeling Using Modal Analysis. ACM Trans. Graph. 30, 5,
Article 119 (Oct. 2011), 11 pages. https://doi.org/10.1145/2019627.2019638

Shayan Hoshyari, Hongyi Xu, Espen Knoop, Stelian Coros, and Moritz Bächer. 2019.
Vibration-minimizing motion retargeting for robotic characters. ACM Transactions
on Graphics (TOG) 38, 4 (2019), 1–14.

Gaëtan Kerschen, Maxime Peeters, Jean-Claude Golinval, and Alexander F Vakakis. 2009.
Nonlinear normal modes, Part I: A useful framework for the structural dynamicist.
Mechanical Systems and Signal Processing 23, 1 (2009), 170–194.

Theodore Kim and Doug L. James. 2009. Skipping Steps in Deformable Simulation
with Online Model Reduction. ACM Trans. Graph. 28, 5 (Dec. 2009), 1–9. https:
//doi.org/10.1145/1618452.1618469

Malte Krack and Johann Gross. 2019. Harmonic Balance for Nonlinear Vibration Problems.
Springer.

Malte Krack, Loic Salles, and Fabrice Thouverez. 2017. Vibration prediction of bladed
disks coupled by friction joints. Archives of Computational Methods in Engineering
24, 3 (2017), 589–636.

Dingzeyu Li, David I. W. Levin, Wojciech Matusik, and Changxi Zheng. 2016. Acoustic
Voxels: Computational Optimization of Modular Acoustic Filters. ACM Trans. Graph.
35, 4, Article 88 (July 2016), 12 pages. https://doi.org/10.1145/2897824.2925960

Vittorio Megaro, Jonas Zehnder, Moritz Bächer, Stelian Coros, Markus H Gross, and
Bernhard Thomaszewski. 2017. A computational design tool for compliant mecha-
nisms. ACM Trans. Graph. 36, 4 (2017), 82–1.

ACM Trans. Graph., Vol. 39, No. 6, Article 191. Publication date: December 2020.

https://doi.org/10.1145/2767001
https://doi.org/10.1145/2766985
https://doi.org/10.1145/2601097.2601157
https://doi.org/10.1109/ISCAS.1992.230008
https://doi.org/10.1109/ISCAS.1992.230008
https://doi.org/10.1145/1073204.1073300
https://doi.org/10.1145/1073204.1073300
https://doi.org/10.1145/1399504.1360662
https://doi.org/10.1145/2816795.2818108
https://doi.org/10.1145/2816795.2818108
https://doi.org/10.1145/1360612.1360623
https://doi.org/10.1145/2508363.2508400
https://doi.org/10.1145/2508363.2508400
https://doi.org/10.1145/3072959.3073669
https://doi.org/10.1145/2461912.2461953
https://doi.org/10.1016/j.jsv.2014.08.023
https://doi.org/10.1115/1.4041700
https://doi.org/10.1111/cgf.13645
https://doi.org/10.1145/2601097.2601160
https://doi.org/10.1080/10618562.2012.742512
https://doi.org/10.1080/10618562.2012.742512
https://arxiv.org/abs/https://doi.org/10.1080/10618562.2012.742512
https://doi.org/10.1145/2019627.2019638
https://doi.org/10.1145/1618452.1618469
https://doi.org/10.1145/1618452.1618469
https://doi.org/10.1145/2897824.2925960


A Harmonic Balance Approach for Designing Compliant Mechanical Systems with Nonlinear Periodic Motions • 191:13

Federico L. Moro, Alexander Spröwitz, Alexandre Tuleu, Massimo Vespignani, Nikos G.
Tsagarakis, Auke J. Ijspeert, and Darwin G. Caldwell. 2013. Horse-like walking,
trotting, and galloping derived from kinematic Motion Primitives (kMPs) and their
application to walk/trot transitions in a compliant quadruped robot. Biological
Cybernetics 107, 3 (2013).

Simon Pabst, Sybille Krzywinski, Andrea Schenk, and Bernhard Thomaszewski. 2008.
Seams and Bending in Cloth Simulation. In Workshop in Virtual Reality Inter-
actions and Physical Simulation "VRIPHYS" (2008), Francois Faure and Matthias
Teschner (Eds.). The Eurographics Association. https://doi.org/10.2312/PE/vriphys/
vriphys08/031-038

Zherong Pan, Hujun Bao, and Jin Huang. 2015. Subspace Dynamic Simulation Using
Rotation-Strain Coordinates. ACM Trans. Graph. 34, 6, Article 242 (Oct. 2015),
12 pages. https://doi.org/10.1145/2816795.2818090

Maxime Peeters, Régis Viguié, Guillaume Sérandour, Gaëtan Kerschen, and J-C Golinval.
2009. Nonlinear normal modes, Part II: Toward a practical computation using
numerical continuation techniques. Mechanical systems and signal processing 23, 1
(2009), 195–216.

A. Pentland and J. Williams. 1989. Good Vibrations: Modal Dynamics for Graphics and
Animation. In Proceedings of the 16th Annual Conference on Computer Graphics and
Interactive Techniques (SIGGRAPH ’89). Association for Computing Machinery, New
York, NY, USA, 215–222. https://doi.org/10.1145/74333.74355

Rüdiger Seydel. 2009. Practical bifurcation and stability analysis. Vol. 5. Springer Science
& Business Media.

Ahmed A. Shabana. 1990. Theory of Vibration, Volume II: Discrete and Continuous
Systems. Springer, New York, NY, USA.

Mélina Skouras, Bernhard Thomaszewski, Stelian Coros, Bernd Bickel, and Markus
Gross. 2013. Computational Design of Actuated Deformable Characters. ACM
Trans. Graph. 32, 4, Article 82 (July 2013), 10 pages. https://doi.org/10.1145/2461912.
2461979

Mélina Skouras, Bernhard Thomaszewski, Peter Kaufmann, Akash Garg, Bernd Bickel,
Eitan Grinspun, and Markus Gross. 2014. Designing Inflatable Structures. ACM
Trans. Graph. (Proc. SIGGRAPH) 33, 4 (2014).

Takuto Takahashi, Jonas Zehnder, Hiroshi G. Okuno, Shigeki Sugano, Stelian Coros, and
Bernhard Thomaszewski. 2019. Computational Design of Statically Balanced Planar
Spring Mechanisms. IEEE Robotics and Automation Letters 4 (2019), 4438–4444.

Bernhard Thomaszewski, Stelian Coros, Damien Gauge, Vittorio Megaro, Eitan Grin-
spun, and Markus Gross. 2014. Computational Design of Linkage-Based Characters.
ACM Trans. Graph. 33, 4, Article 64 (July 2014), 9 pages. https://doi.org/10.1145/
2601097.2601143

Nobuyuki Umetani, Jun Mitani, Takeo Igarashi, and Kenshi Takayama. 2010. Designing
Custommade Metallophone with Concurrent Eigenanalysis. In New Interfaces for
Musical Expression++ (NIME++). 26–30.

Nobuyuki Umetani, Athina Panotopoulou, Ryan Schmidt, and Emily Whiting. 2016.
Printone: Interactive Resonance Simulation for Free-Form Print-Wind Instrument
Design. ACM Trans. Graph. 35, 6, Article 184 (Nov. 2016), 14 pages. https://doi.org/
10.1145/2980179.2980250

Hongyi Xu, Espen Knoop, Stelian Coros, and Moritz Bächer. 2018. Bend-it: Design and
Fabrication of Kinetic Wire Characters. ACM Trans. Graph. 37, 6, Article 239 (Dec.
2018), 15 pages. https://doi.org/10.1145/3272127.3275089

Jonas Zehnder, Stelian Coros, and Bernhard Thomaszewski. 2016. Designing
Structurally-Sound Ornamental Curve Networks. ACM Trans. Graph. 35, 4, Ar-
ticle 99 (July 2016), 10 pages. https://doi.org/10.1145/2897824.2925888

Ran Zhang, Thomas Auzinger, Duygu Ceylan, Wilmot Li, and Bernd Bickel. 2017.
Functionality-Aware Retargeting of Mechanisms to 3D Shapes. ACM Trans. Graph.
36, 4, Article 81 (July 2017), 13 pages. https://doi.org/10.1145/3072959.3073710

Changxi Zheng and Doug L. James. 2011. Toward High-Quality Modal Contact Sound.
ACM Trans. Graph. 30, 4, Article 38 (July 2011), 12 pages. https://doi.org/10.1145/
2010324.1964933

A FREQUENCY-SPACE EQUILIBRIUM EQUATIONS
To derive the dynamic equilibrium equations in frequency space,
we start by rewriting the time-dependent nodal positions (4) and
forces (5) in matrix as

x(𝑡) = (Q(𝑡) ⊗ I3𝑛)z , (29)
f(𝑡) = (Q(𝑡) ⊗ I3𝑛)b (30)

where z and b are Fourier coefficients for positions and forces, and
Q(𝑡) holds the individual terms of the sine and cosine series

𝑄 (𝑡) = [1 sin (𝜔𝑡) cos (𝜔𝑡) . . . sin (𝑁𝐻𝜔𝑡) cos (𝑁𝐻𝜔𝑡)] . (31)

Similarly, velocities and accelerations are expressed as
¤x(𝑡) = ( ¤𝑄 (𝑡) ⊗ I3𝑛)z = ((Q(𝑡)∇) ⊗ I3𝑛)z , (32)

¥x(𝑡) = ( ¥𝑄 (𝑡) ⊗ I3𝑛)z = ((Q(𝑡)∇2) ⊗ I3𝑛)z (33)
where the derivative operators are defined as

∇ = diag(0,∇1, . . . ,∇𝑗 , . . . ,∇𝑁𝐻
) , (34)

∇2 = diag(0,∇2
1, . . . ,∇

2
𝑗 , . . . ,∇

2
𝑁𝐻

) (35)

with

∇𝑗 =

[
0 − 𝑗𝜔
𝑗𝜔 0

]
and ∇2

𝑗 =

[
−( 𝑗𝜔)2 0

0 −( 𝑗𝜔)2

]
. (36)

Substituting expressions (29, 30) and (32, 33) into the equations of
motion (2) yields

M((Q(𝑡)∇2) ⊗ I3𝑛)z + D̂((Q(𝑡)∇) ⊗ I3𝑛)z = (Q(𝑡) ⊗ I3𝑛)b . (37)
The mixed-product property of the Kronecker tensor product

(A ⊗ B) (C ⊗ D) = (AC) ⊗ (BD)
is then applied to the left-hand side of the equation as

M((Q(𝑡)∇2) ⊗ I3𝑛)z = (1 ⊗ M) ((Q(𝑡)∇2) ⊗ I3𝑛)z
= ((Q(𝑡)∇2) ⊗ M)z ,

D̂((Q(𝑡)∇) ⊗ I3𝑛)z = (1 ⊗ D̂) ((Q(𝑡)∇) ⊗ I3𝑛)z
= ((Q(𝑡)∇) ⊗ D̂)z .

Using this reformulation, Eq. (37) is rewritten as

((Q(𝑡)∇2) ⊗ M)z + ((Q(𝑡)∇) ⊗ D̂)z = (Q(𝑡) ⊗ I3𝑛)b . (38)
The time dependency can be removed by a Galerkin procedure,
projecting (38) onto the orthogonal trigonometric basis Q(𝑡) and
integrating over the period 𝑇 of the external force, to obtain((

2
𝑇

∫ 𝑇

0
Q𝑇 (𝑡)Q(𝑡)𝑑𝑡∇2

)
⊗M

)
z+

((
2
𝑇

∫ 𝑇

0
Q𝑇 (𝑡)Q(𝑡)𝑑𝑡∇

)
⊗D̂

)
z =((

2
𝑇

∫ 𝑇

0
Q𝑇 (𝑡)Q(𝑡)𝑑𝑡

)
⊗ I3𝑛

)
b (39)

Since orthogonality of Q(𝑡) implies

2
𝑇

∫ 𝑇

0
Q𝑇 (𝑡)Q(𝑡)𝑑𝑡 = I2𝑁𝐻 +1 , (40)

Eq. (37) finally transforms into a set of algebraic equations

(∇2 ⊗ M)z + (∇ ⊗ D̂)z = (I2𝑁𝐻 +1 ⊗ I3𝑛)b (41)
which can also be written in a more compact form to yield (8).

B DFT OPERATORS
Using Eq. (29), we can define the inverse DFT operator that trans-
forms from Fourier coefficients to time domain positions as

x̃ = [Q(𝑡1) ⊗ I3𝑛, . . . ,Q(𝑡𝑁 ) ⊗ I3𝑛]𝑇 z = (Γ ⊗ I3𝑛)z ≡ Γ𝑥 z . (42)
Similarly, using Eq. (32), the inverse DFT operator for velocity is
obtained as

ṽ = ((ΓΔ) ⊗ I3𝑛)z ≡ Γ𝑣z . (43)
Having transformed positions and velocities from frequency space
to the time domain, we can evaluate the nonlinear forces for all
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sampling points and then transform them back to the frequency
domain as

b = (Γ ⊗ I3𝑛)−1 f̃ = (Γ−1 ⊗ I3𝑛)f̃ ≡ Γ−1
𝑓

f̃ . (44)

The operators Γ and Γ−1 are given as

Γ =


1
.
.
.

1

sin (𝜃1)
.
.
.

sin (𝜃𝑁 )

cos (𝜃1)
.
.
.

cos (𝜃𝑁 )

. . .

.

.

.

. . .

sin (𝑁𝐻𝜃1)
.
.
.

sin (𝑁𝐻𝜃𝑁 )

cos (𝑁𝐻𝜃1)
.
.
.

cos (𝑁𝐻𝜃𝑁 )

 , (45)

Γ−1 =
1
𝑁



1
2 sin (𝜃1)
2 cos (𝜃1)

.

.

.

2 sin (𝑁𝐻𝜃1)
2 cos (𝑁𝐻𝜃1)

. . .

. . .

. . .

.

.

.

. . .

. . .

1
2 sin (𝜃𝑁 )
2 cos (𝜃𝑁 )

.

.

.

2 sin (𝑁𝐻𝜃𝑁 )
2 cos (𝑁𝐻𝜃𝑁 )


. (46)

It is worth noting that 𝜃𝑖 = 𝜔𝑡𝑖 = 𝜔 (𝑖Δ𝑡) = 2𝜋𝑖/𝑁 such that Γ and
Γ−1 do not depend on 𝜔 .

C NEWMARK TIME INTEGRATION
The Newmark integration scheme determines end-of-step positions
x𝑡+Δ𝑡 , velocities ¤x𝑡+Δ𝑡 and accelerations ¥x𝑡+Δ𝑡 such as to satisfy

¤x𝑡+Δ𝑡 = ¤x𝑡 + Δ𝑡 (1 − 𝛾) ¥x𝑡 + Δ𝑡𝛾 ¥x𝑡+Δ𝑡 , (47)

x𝑡+Δ𝑡 = x𝑡 + Δ𝑡 ¤x𝑡 +
1
2Δ𝑡

2 ((1 − 2𝛽) ¥x𝑡 + 2𝛽 ¥x𝑡+Δ𝑡 ) (48)

where 0 ≤ 𝛽 ≤ 1
2 and 0 ≤ 𝛾 ≤ 1 are parameters that we set to 𝛽 = 1

4
and 𝛾 = 1

2 to obtain second-order accuracy. We express ¤x𝑡+Δ𝑡 and
¥x𝑡+Δ𝑡 in terms of x𝑡+Δ𝑡 and known quantities at time 𝑡 as

¥x𝑡+Δ𝑡 =
1

𝛽Δ𝑡2 (x𝑡+Δ𝑡 − x𝑡 ) −
1

𝛽Δ𝑡
¤x𝑡 −

1 − 2𝛽
2𝛽 ¥x𝑡 , (49)

¤x𝑡+Δ𝑡 =
𝛾

𝛽Δ𝑡
(x𝑡+Δ𝑡 − x𝑡 ) +

(
1 − 𝛾

𝛽

)
¤x𝑡 + Δ𝑡

(
1 − 𝛾

2𝛽

)
¥x𝑡 . (50)

Substituting the above equations into the time-domain equations of
motion (1) yields

R(x𝑡+Δ𝑡 ) = M
(

1
𝛽Δ𝑡2 (x𝑡+Δ𝑡 − x𝑡 ) −

1
𝛽Δ𝑡

¤x𝑡 −
1 − 2𝛽

2𝛽 ¥x𝑡
)
+[

𝐷𝛼M + 𝐷𝛽K(x𝑡+Δ𝑡 )
] (

𝛾

𝛽Δ𝑡
(x𝑡+Δ𝑡 − x𝑡 ) +

(
1 − 𝛾

𝛽

)
¤x𝑡+

Δ𝑡

(
1 − 𝛾

2𝛽

)
¥x𝑡

)
− fint (x𝑡+Δ𝑡 ) − fext (x𝑡+Δ𝑡 ) = 0 . (51)

We solve the above system of nonlinear equations using Newton’s
method. Note that the tangential stiffness matrix depends on the
end-of-step positions x𝑡+Δ𝑡 .

D ACCURACY OF HBM VS. NEWMARK
To further investigate the accuracy of HBM compared to Newmark,
we additionally analyze the impact of the number of sample points
used to evaluate the nonlinear forces in the time domain.

It can be seen from Fig. 3 that, with increasing number of harmon-
ics, the error between HBM and Newmark initially decreases very
rapidly. For 𝑁𝐻 > 5, however, the error stays almost constant. This
seemingly odd behavior is explained by the fact that the reference
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Fig. 15. Trajectory difference between HBM and Newmark as a function
of the number of time-domain samples 𝑁𝐴𝐹𝑇 for 𝑁𝐻 = 5 harmonics. The
step size for Newmark is set as Δ𝑡 = 𝑇 /𝑁𝐴𝐹𝑇 , where𝑇 is the period of the
forcing.

solution, computed using Newmark, is itself subject to discretization
error. We can reduce this time-domain error by using smaller step
sizes and, as we increase both the number of harmonics 𝑁𝐻 and
time-domain samples 𝑁𝐴𝐹𝑇 , the error should vanish. This expec-
tation is supported by the results shown in Fig. 15, indicating a
sustained decrease in error for increasing number of time-domain
samples and, accordingly, the step size used for Newmark.

E MECHANICAL MODELS
Our approach extends to a large range of mechanical models and
we show examples using compliant mechanisms, rod networks, thin
shells, and volumetric solids. All computational models are imple-
mentations of standard approaches. We represent compliant mecha-
nisms through their joint positions, enforcing angular and distance
constraints for rigid joints and links with stiff penalty terms. Com-
pliant elements are modeled using standard linear springs whose
endpoints are expressed in local coordinates of the corresponding
link. For the rod network example, we use discrete elastic rods
[Bergou et al. 2008] together with the formulation by Zehnder et al.
[2016] for network connections. For our thin shell examples, we use
the discrete shell model by Grinspun et al. [2003] for bending and
linear triangle finite elements with St. Venant-Kirchhoffmaterial [Sk-
ouras et al. 2014] for in-plane deformations. Our solid example uses
standard linear tetrahedron elements with a St. Venant-Kirchhoff
material.

Each model gives rise to a discrete elastic energy, whose negative
gradients with respect to time-domain positions and velocities de-
termine internal forces which enter the frequency-space equations
of motion (8) through the nonlinear force term (3). For sensitivity
analysis, we require the derivatives of the forces with respect to
material parameters, masses, and rest shape. All of these derivatives
are computed symbolically using compile-time automatic differenti-
ation. Additionally, we use the same penalty term for all mechanical
model to enforce harmonic motion for the boundary nodes attached
to the motor or driving element.
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