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1 DERIVATIVES FOR COMPUTING STATIC
EQUILIBIRUM

We solve the static equilibrium state by minimizing the energy of
the system,

min
q

𝐸 = 𝐸𝑒 (q) + 𝐸𝑐 (q) , (1)

where 𝐸𝑐 = 𝜇
∑
𝑘∈C 𝑠𝑘𝑏𝑘 is the total contact potential summed over

all contact pairs in the contact set C with an adaptive barrier stiff-
ness 𝜇, an smooth factor 𝑠𝑘 and a log barrier term 𝑏𝑘 . 𝐸𝑒 denotes
the potential via external forces. Solving this minimization problem
requires the energy gradient 𝑑𝐸/𝑑q and the hessian 𝑑2𝐸/𝑑q2. Com-
puting the gradient and hessian for the external potential energy
is always easy. For simplicity, we express the 𝑘-th contact energy
as 𝐸𝑐,𝑘 = 𝑠 · 𝑏, where 𝑠 and 𝑏 are the corresponding 𝑘-th smooth
factor and log barrier term. Therefore, the gradient of the contact
potential is
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with v = (𝑑, 𝜆)𝑇 , and the hessian of the contact potential is
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Derivatives of Distance. For the gradient and hessian of distance
with respect to configuration q, we have

𝑑𝑑

𝑑q
=

𝜕𝑑

𝜕c
𝑑c
𝑑q

+ 𝜕𝑑

𝜕q
,

𝑑2𝑑

𝑑q2
=
𝑑c
𝑑q

𝑇 (
𝜕2𝑑

𝜕c2
𝑑c
𝑑q

+ 𝜕2𝑑
𝜕c𝜕q

)
+ 𝜕𝑑

𝜕c
𝑑2c
𝑑q2

+ 𝜕2𝑑
𝜕q𝜕c

𝑑c
𝑑q

+ 𝜕2𝑑

𝜕q2
,

(4)

where the derivatives 𝑑c/𝑑q and 𝑑2c/𝑑q2 are unknown. We lever-
age the state with the minimum distance,

𝑑𝑑

𝑑c
= 0 , (5)

as an implicit map between parametric coordinate c and rigid body
configuration q. Any change in configuration q should lead to a
corresponding change in coordinate c such that we are again at the
minimum distance state. Therefore, taking the first-order sensitivity
analysis of Equation (5) yields

𝜕2𝑑

𝜕c2
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+ 𝜕2𝑑
𝜕c𝜕q

= 0 , (6)

from which we can obtain 𝑑c/𝑑q, the so-called sensitivity matrix,
by solving the linear system.

Similarly, taking the sensitivity analysis for the Equation (6), we
can compute the second-order sensitivity matrix 𝑑2c/𝑑q2 by solving
the following linear system,
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Derivatives of eigenvalue. For the gradient and hessian of the
smallest eigenvalue, we assume there is a unique smallest eigen-
value 𝜆 with its corresponding eigenvector e from the hessian matrix
H = 𝑑𝑑2

𝑑c2 . Therefore, its gradient and hessian with respect to config-
uration q are, respectively,
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with the corresponding items as
𝑑𝜆

𝑑H
= ee𝑇 , (10)
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, (12)
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=
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e𝑗 , (13)
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where ⊗ is the Kronecker product operator, e(𝑘 ) and e(𝑙 ) are the
𝑘-th and 𝑙-th value in eigenvector e, respectively, and e𝑗 is the
eigenvector associated with eigenvalue 𝜆 𝑗 .

2 DERIVATIVES FOR INVERSE DESIGN
Evaluating the design objectives in Section 3.3 of the main document
refers to solving static equilibrium states y for given design param-
eters p, where y = [q, 𝜺] for the planar case and y = [q,𝜿] for the
bending case. According to the periodic boundary conditions and
the paraboloid bending condition, we determine an intermediate
state of rigid bodies as q𝐵 = C𝐵 (y) for computing contacts.

We compute the map between parameters p and configuration y
again by leveraging the sensitivity analysis of the static equilibrium
state,
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which yields
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where 𝜕f
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Derivatives of distance. The gradient of distance with respect to
the design parameters p is given by
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where 𝑑c
𝑑p can be computed by solving
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where computing
𝜕 𝑑c
𝑑q
𝜕p requires solving the linear system from the

second-order sensitivity analysis of Equation (6),
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Derivatives of eigenvalue. The gradient of smallest eigenvalue 𝜆
with respect to design parameters p is
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