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Fig. 1. Our method enables optimization-driven design of Discrete Interlocking Materials with desired mechanical behavior. For this threefold symmetric
chainmail, both in- and out-of-plane mechanical properties of the initial homogeneous designs (I-a, II-a) exhibit threefold symmetric uniaxial deformation
limit profiles. Our approach automatically finds shape parameters for each interlocking element that lead to diverse desired mechanical properties (red dots).

We present a computational approach for designing Discrete Interlocking
Materials (DIMs) with desired mechanical properties. Unlike conventional
elastic materials, DIMs are kinematic materials governed by internal contacts
among elements. These contacts induce anisotropic deformation limits that
depend on the shape and topology of the elements. To enable gradient-based
design optimization of DIMs with desired deformation limits, we introduce
an implicit representation of interlocking elements based on unions of tori.
Using this low-dimensional representation, we simulate DIMs with smoothly
evolving contacts, allowing us to predict changes in deformation limits as
a function of shape parameters. With this toolset in hand, we optimize for
element shape parameters to design heterogeneous DIMs that best approx-
imate prescribed limits. We demonstrate the effectiveness of our method
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by designing discrete interlocking materials with diverse limit profiles for
in- and out-of-plane deformation and validate our method on fabricated
physical prototypes.
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1 INTRODUCTION
Designing materials that balance flexibility and strength is a central
challenge for many engineering applications. Discrete interlocking
materials (DIMs)—generalized chainmail fabrics made of quasi-rigid
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interlocking elements—have shown promise in reconciling these
traditionally opposing properties.
DIMs are highly flexible materials, allowing for deformations

without restoring forces in their slack regime. The transition to the
taut regime occurs upon full contact chain formation, activating
the material’s inherent strength. This stark contrast in deformation
response makes DIMs attractive for a diverse range of applications,
ranging from robotics and biomedical devices to protective gear
and aerospace engineering. Each of these applications will gener-
ally have specific requirements on material behavior, raising the
question of how to design DIMs with desired mechanical properties.
Unlike conventional elastic materials, DIMs are characterized by
their kinematic deformation limits, which depend on the shape and
topology of its constituent elements. The inverse design of DIMs
with desired mechanical properties is challenging as element shapes
with potentially large numbers of contacts have a complex, non-
linear effect on material performance. Recently, Tang et al. [2023]
introduced a homogenization algorithm to characterize in- and out-
of-plane deformation limits of homogeneous DIMs by leveraging
deformation tests via forward simulation.

In this work, we present a new computational approach for sim-
ulating and designing quasi-rigid discrete interlocking materials.
Rather than using explicit triangle meshes, we propose an implicit
representation based on unions of tori for simulating and designing
discrete interlocking materials. Using this low-dimensional implicit
representation, we simulate DIMs with smoothly evolving contacts,
allowing us to predict changes in deformation limits as a function of
shape parameters of interlocking elements.With this toolset in hand,
we optimize for element shape parameters to design heterogeneous
DIMs that best approximate prescribed macromechanical properties.
We demonstrate the effectiveness of our method by designing DIMs
with diverse limit profiles for in- and out-of-plane deformation. We
further validate our method through real-world experiments on
3D-printed samples, showing good agreement between simulation
and measurement.

2 RELATED WORK
Metamaterial Design. Through precisely architected microstruc-

tures, flexible metamaterials can achieve a broad range of macrome-
chanical properties [Bertoldi et al. 2017]. Fueled by the increasing
availability of 3D printing technology, the graphics community has
started to embrace the problem of generating 3D-printable content
such as models optimized for stability [Lu et al. 2014; Stava et al.
2012; Zhou et al. 2013], mechanical assemblies [Ceylan et al. 2013;
Coros et al. 2013; Thomaszewski et al. 2014; Zhu et al. 2012], or
characters that can be posed and deformed in desired ways [Bächer
et al. 2012; Skouras et al. 2013]. One particular line of research
in this context investigates the creation of 3D-printable metama-
terials. The spectrum includes layered materials fabricated with
multi-material printers [Bickel et al. 2010], materials with lattice-
[Panetta et al. 2017, 2015], voxel- [Schumacher et al. 2015; Zhu et al.
2017], and foam-like [Martínez et al. 2016, 2017] structures, plate
metamaterials [Ren et al. 2024; Rodriguez et al. 2022], as well as
two-dimensional, sheet-like materials [Leimer and Musialski 2020;
Li et al. 2023a; Martínez et al. 2019; Schumacher et al. 2018; Tozoni

et al. 2020]. While these previous works have explored many aspects
of mechanical metamaterials, they all focus on elastic behavior. In
this work, we introduce a computational method for designing a
new class of metamaterials—discrete interlocking materials—whose
behavior is regulated by internal contact, not elastic deformation.
To our knowledge, no computational method has been introduced
for designing DIMs.

Interlocking Materials & Structures. Using interlocking as a mech-
anism for creating stable assemblies is a concept that is used across
architecture, robotics, and material sciences. This approach allows
for the construction of functional furniture without nails or adhe-
sives [Song et al. 2017; Sun et al. 2024; Yao et al. 2017], rigid assembly
puzzles [Chen et al. 2022; Song et al. 2012; Sun and Zheng 2015;
Wang et al. 2018; Xin et al. 2011], and stable surfaces made from
flexible [Skouras et al. 2015] or rigid [Wang et al. 2019] components.
Interestingly, imperfections during manufacturing can lead to loose
joints such that assemblies, despite the rigidity of their components,
can produce macroscopic deformations that can be harnessed, e.g.,
for robotics applications [Lensgraf et al. 2020]. Recently, Montes
Maestre et al. [2024] considered flexible scaled sheets and introduced
a computational approach for characterizing the complex coupling
between quasi-rigid scales and the soft substrate in which they are
embedded.

The concept of interlocking can also be used to create generalized
chainmail materials with tunable mechanical behavior [Engel and
Liu 2007; Ransley et al. 2017; Tang et al. 2023; Zhou et al. 2025]. For
example, Wang et al. [2021] showed that vacuum-induced jamming
is an effective way of controlling stiffness—a concept that has been
further explored in multiple follow-up applications [Gao et al. 2023;
Tian et al. 2023; Wang et al. 2023]. While these existing methods
indicate a rich space of generalized chainmail materials, the question
of how to determine parameters that lead to desired mechanical
behavior remains largely open. In this work, we propose a new
computational framework to simulate and design heterogeneous
chainmail materials with desired macromechanical properties.

Simulating Contact. Contact modeling is crucial in science and en-
gineering, particularly in applications such as robotics and computer
animation. In the computer graphics community, robust contact sim-
ulation has been a focus for decades [Bertails-Descoubes et al. 2011;
Erleben 2018; Geilinger et al. 2020; Kaufman et al. 2008; Li et al. 2022;
Peiret et al. 2019]. In the context of simulating interlocking assem-
blies with tight contacts, Qu and James [2021] propose a method
that computes certificates for topological validity between arrange-
ments of closed curves found, e.g., when simulating knitwear [Cirio
et al. 2014; Kaldor et al. 2008] or chainmail. For general contact
simulation, the Incremental Potential Contact (IPC) method [Li
et al. 2020] is a state-of-the-art contact model, utilizing clamped
logarithmic barriers and continuous collision detection (CCD) to
ensure intersection-free optimization. Subsequent work aimed at
improving its robustness [Huang et al. 2024b; Li et al. 2023b] and
performance [Huang et al. 2024a], and introduced extensions for im-
plicit surfaces [Du et al. 2024] and rigid body motion [Ferguson et al.
2021]. Rigid-body IPC is a viable option for forward simulation of in-
terlocking materials [Tang et al. 2023], although the computational
costs can be substantial. For inverse design of generalized chainmail
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materials, however, we observed that the combination of IPC and ex-
plicit triangle meshes becomes prohibitively expensive. To address
this problem, we introduce an implicit representation of interlock-
ing elements based on unions of tori. This implicit representation
allows us to simulate discrete interlocking materials with smoothly
evolving contacts, thus opening the door to efficient gradient-based
design optimization of heterogeneous chainmail materials.

3 THEORY
Our goal is to design discrete interlocking materials (DIMs) with
desired macromechanical properties. To this end, we must first be
able to efficiently simulate DIMs and to compute the simulation
derivatives required for inverse design. We focus on the design of
kinematic deformation limits for DIMs made of quasi-rigid inter-
locking elements without considering friction or elasticity. To this
end, we start by introducing an efficient implicit representation
to model interlocking elements based on unions of tori. With this
low-dimensional implicit representation, we simulate DIMs with
smoothly evolving contacts, allowing us to predict changes in de-
formation limits as a function of shape parameters. Based on this
efficient forward simulation, we formulate objective functions to
optimize in- and out-of-plane deformation limits for heterogeneous
DIMs with desired behavior.

3.1 Implicit Contact Model
Torus-like rings are the typical building block for DIMs. They cover
a large range of interlocking materials with diverse mechanical
properties. We use an implicit representation to model each inter-
locking element based on unions of multiple tori with elliptical
cross-sections. Any point on the surface of a given torus 𝑖 can be
parametrized as

𝑉𝑥 (c𝑖 ) = (𝑅 + 𝑟𝑐0 cos(𝑣)) cos(𝑢) ,
𝑉𝑦 (c𝑖 ) = (𝑅 + 𝑟𝑐0 cos(𝑣)) sin(𝑢) ,

𝑉𝑧 (c𝑖 ) = 𝑟𝑐1 sin(𝑣) ,
(1)

where c𝑖 = (𝑢, 𝑣) are 2D parametric coor-
dinates, 𝑅 is the ring radius of the torus,
and 𝑟𝑐0 and 𝑟𝑐1 are the radii of the cross-
section as shown in the inset figure. The
squared distance between two surface
points on the tori 𝑖 and 𝑗 can be defined
as

𝑑 (c𝑖 𝑗 , q𝑖 𝑗 ) = ∥V𝑡𝑖 − V𝑡𝑗 ∥
2 , (2)

where c𝑖 𝑗 = (c𝑖 , c𝑗 ) and q𝑖 𝑗 = (q𝑖 , q𝑗 ) are the parametric coordi-
nates and rigid body configurations of torus 𝑖 and 𝑗 , respectively.
Each rigid body configuration is given by q𝑖 = (x𝑖 ,𝝎𝑖 ) ∈ R6, with
translation x𝑖 and rotation 𝝎𝑖 . The transformed vertex position is
V𝑡
𝑖
(c𝑖 , q𝑖 ) = R(𝝎𝑖 )V(c𝑖 ) + x𝑖 , where the position of vertex V(c𝑖 )

is V(c𝑖 ) = (𝑉𝑥 (c𝑖 ),𝑉𝑦 (c𝑖 ),𝑉𝑧 (c𝑖 )), and the rotation matrix R(𝝎𝑖 )
is computed using Rodrigues’ Rotation Formula, as described in
[Ferguson et al. 2021]. To detect contact between two tori, we seek
a pair of points, one on each torus, with minimum distance. Given
the rigid transformations of the two tori, we obtain the minimum

squared distance by solving the minimization problem

min
c𝑖 𝑗

𝑑 (c𝑖 𝑗 , q𝑖 𝑗 ) . (3)

To this end, we use Newton’s method with a convergence threshold
of 10−12 on the distance gradient ∇c𝑖 𝑗𝑑 . Furthermore, we reduce
the gradient norm by taking full Newton steps until no further
decrease is observed. Since the distance between two tori might
have multiple local minima, we use multiple samples on both tori as
initial guesses. If a local minimum squared distance satisfies 𝑑 < 𝑑 ,
with 𝑑 = 10−8, we add this contact pair into the contact set C and
define a corresponding contact potential,

𝑏 (𝑑,𝑑) =
{
−(𝑑 − 𝑑)2 ln (𝑑/𝑑) , 0 < 𝑑 < 𝑑 ,

0 , 𝑑 ≥ 𝑑 ,
(4)

using the log barrier approach described in [Li et al. 2020]. With
this implicit contact potential set up, we obtain static equilibrium
states for all interlocking elements by solving the unconstrained
minimization problem

min
q

𝐸 = 𝐸𝑒 + 𝐸𝑐 , (5)

where q = (q1, . . . , q𝑛) ∈ R6𝑛 and 𝐸𝑐 = 𝜇
∑
𝑘∈C 𝑏𝑘 is the total con-

tact potential summed over all contact pairs in the contact set C with
an adaptive barrier stiffness 𝜇 as described in [Li et al. 2020]. Further-
more, 𝐸𝑒 is the potential from external force defined in Equations
(12) and (14) for in- and out-of-plane deformations, respectively.
Section 1 of the supplementary document provides the analytical
derivatives required for solving this minimization problem.

Continuous Collision Detection. Given a search direction from the
linear solver, we must determine the step size 𝛼𝑡 that reduces the ob-
jective function while avoiding intersections between interlocking
elements. To this end, we develop a two-stage continuous collision
detection (CCD) algorithm that takes advantage of broad and nar-
row phase detection schemes. In the broad phase, we approximate
interlocking elements with bounding spheres and use a hash grid
to efficiently detect overlaps. If two bounding spheres overlap, we
add the corresponding interlocking elements to a candidate set for
the narrow phase. In the narrow phase, we compute the largest step
size 𝛼𝑡 by finding the minimum squared distance between two tori,
each belonging to different interlocking elements,

min
𝛼𝑡

𝑑 (6a)

s.t. 𝑑 (𝛼𝑡 ) = min
c𝑖 𝑗

𝑑 (c𝑖 𝑗 , q𝑖 𝑗 + 𝛼𝑡Δq𝑖 𝑗 ) (6b)

0 ≤ 𝛼𝑡 ≤ 𝛼ℎ𝑖 . (6c)

If 𝑑 < 𝑑𝑡ℎ with 𝑑𝑡ℎ = 10−20, we flag the tori as intersecting and
decrease 𝛼ℎ𝑖 by a factor of 0.9 until 𝑑 > 𝑑𝑡ℎ . To solve the optimiza-
tion problem (6), we apply sensitivity analysis to the optimality
conditions ∇c𝑖 𝑗𝑑 = 0 of (6b),

∇2
c𝑖 𝑗𝑑 ·

𝑑c𝑖 𝑗
𝑑q𝑖 𝑗

+ 𝜕2𝑑

𝜕c𝑖 𝑗 𝜕q𝑖 𝑗
= 0 , (7)
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Fig. 2. Singularity of contact between two tori. States (a-d) are four different contact states with increasing line search step size, each of which presents
the minimum squared distance field of a torus to the other torus in 𝑢 − 𝑣 coordinate. For the sake of clarity, we show the color of the distance field between
minimum distance 𝑑𝑚 and 101%𝑑𝑚 . (a) Given 𝑑 = 10−8, there is only one pair of contact points between two tori at the beginning. (b) Increasing a tiny step
size, the torus rotates and the second pair of contact points suddenly emerges, leading to an energy wall; see the left side of (f). (c) The ’contact zone’ gradually
transitions from contact-0 to contact-1. (d) Further increasing the step size to around 0.27, the contact-0 disappears, resulting in a discontinuous energy drop;
see the right side of (f). (e) The evolving distance of the two contact pairs, where contact-0 and -1 disappear and emerge with a squared distance smaller
than 𝑑 , respectively, resulting in a discontinuous contact energy contribution. (g) Our key observation is that the smallest eigenvalue of contact-0 smoothly
decreases from 2.95 × 10−9 to 0 and the smallest eigenvalue of contact-1 increases from 0 to 2.87 × 10−9. (h) By leveraging the smallest eigenvalue, we can
compute a smooth factor leading to a smooth change in contact energy (i).

from which we compute the sensitivity matrix 𝑑c𝑖 𝑗
𝑑q𝑖 𝑗

. The gradient
of the objective function then follows as

∇𝛼𝑡𝑑 =

(
𝜕𝑑

𝜕c𝑖 𝑗

𝑑c𝑖 𝑗
𝑑q𝑖 𝑗

+ 𝜕𝑑

𝜕q𝑖 𝑗

)
𝑑q𝑖 𝑗
𝑑𝛼𝑡

. (8)

There can exist multiple local minima when solving Equation (6b)
for a given step size 𝛼𝑡 . Similar to the approach used for solving
Equation (3), we therefore use multiple sampling points to identify
these minima and select the one with the smallest function value
to compute the sensitivity matrix 𝑑c𝑖 𝑗

𝑑q𝑖 𝑗
. As we discuss below, there

can be situations in which the contact coordinates of the smallest
minimum distance change discontinuously as a function of the tori’s
configurations; see Figure 2(e). In such cases, the global minimum
distance is only𝐶0-continuous. However, since we can always track
the closest distance between two tori in contact, we can simply
use step size reduction during line search to prevent intersections.
Ultimately, we can efficiently solve Equation (6) as a 1-dimensional
bound-constrained minimization problem for all tori in the candi-
date set in parallel using L-BFGS-B.

3.2 Singularity
The minimum distances computed from the implicit representation
of tori can yield multiple contact points. In instances where two
tori are stacked parallel, their contact manifests as a circumferential
ridge, leading to a null space in the distance minimization problem.
However, when modeling DIMs where each torus interlocks with
others, this type of singularity does not arise. Another potential
singularity arises when one torus passes through the center of
another torus, resulting in a circular region of equal distance. In

practice, however, interlocking tori must have clearance values
larger than 𝑑 to allow for sufficient kinematic mobility. We therefore
constrain the thickness of tori accordingly by imposing bounds on
cross-section variables. Consequently, this second type of singularity
can only arise at distances larger than 𝑑 , but such contact pairs are
filtered out anyway.
While these two types of singularities present no problem in

practice, the third type is more challenging to deal with. Specifically,
when two interlocking tori rotate relative to one another, we observe
a shift in the number of contact pairs—from one to two or from
two to one—with each of them starting or ending with a squared
distance smaller than 𝑑 . As shown in Figure 2, a second contact pair
suddenly appears or disappears during relative rotations between
the tori. If a candidate step leads to such a change in contact pairs,
the energy changes abruptly (Figure 2(f)) and the step will likely be
rejected.

To address this problem, we must be able to detect this singularity
problem and introduce a smoothly evolving variable for contact so
that we can leverage it to build a smoothly changing contact energy.
Our key observation is that the smallest eigenvalue 𝜆𝑘 of the Hessian
matrix in the distance minimization problem (3) increases smoothly
from 0 with the appearance of 𝑘-th contact pair in the contact set C
as shown in Figure 2(g). This allows us to introduce a smooth factor
to compute a continuous and differentiable energy by a polynomial
function,

ℎ𝑘 =


−(𝑛 − 1) 𝜆𝑘

𝜆

𝑛
+ 𝑛 𝜆𝑘

𝜆

𝑛−1
, 0 ≤ 𝜆𝑘 ≤ 𝜆 ,

1, 𝜆𝑘 > 𝜆 ,

0, 𝜆𝑘 < 0 .

(9)
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We use𝑛 = 5 and 𝜆 = 10−9, resulting in the
plot shown in the inset. It is worth noting that
since contact points exist at locations with
local minimum distances, the smallest eigen-
value is always 𝜆 ≥ 0. Furthermore, from
our observation, the smallest eigenvalue is
unique within the given range. This smooth
factor ℎ𝑘 can lead to a smooth energy transition from one to two
contact points, as shown in Figure 2(i). However, a contact point
with a small eigenvalue will lead to a small factor, resulting in a
small contact energy contribution even if the contact distance is
small. This can lead to an ill-conditioned optimization problem and
potential intersections. To this end, we further introduce a polyno-
mial smooth factor depending on both the contact squared distance
𝑑 and the factor ℎ𝑘 as

𝑠𝑘 (𝑑,ℎ𝑘 ) =

ℎ𝑘 · 𝑑′2 (3 − 2𝑑′) + (1 − 𝑑′)2 (1 + 2𝑑′) , 𝑑1 ≤ 𝑑 ≤ 𝑑2 ,

1 , 𝑑 < 𝑑1 ,

ℎ𝑘 , 𝑑 > 𝑑2 ,
(10)

where 𝑑′ =
𝑑−𝑑1
𝑑2−𝑑1

with 𝑑1 = 10−12 and
𝑑2 = 4 × 10−12; see the function plot on
the right inset figure. This function smoothly
transitions from ℎ𝑘 to 1 if the distance of a
contact pair gets smaller than the threshold
𝑑2, thus, avoiding a tiny distance and inter-
sections. With this modification, we rewrite
the contact potential in Equation (5) as

𝐸𝑐 = 𝜇
∑︁
𝑘∈C

𝑠𝑘𝑏𝑘 . (11)

Leveraging the smooth evolving contact potential, our method can
robustly predict the deformation behaviors of DIMs. This implicit
simulation model is then utilized for the design of heterogeneous
DIMs in the following section.

3.3 Inverse Design of Mechanical Properties
The implicit contact model offers an efficient forward simulation of
DIMs. Furthermore, it provides smooth gradient information to the
optimization-driven method for the inverse design of DIMs with
various in- and out-of-plane deformation limits.

In-plane deformation limits. We design the in-plane behavior of
DIMs on a tileable unit cell with in-plane periodic boundary con-
ditions, as shown in Figure 3(a). These require x𝑗 = x𝑖 + t𝑖 𝑗 (𝜺)
for translation and 𝝎𝑖 = 𝝎 𝑗 for rotation. Analogous conditions
are applied to the second boundary pair, i.e., x𝑘 = x𝑖 + t𝑖𝑘 (𝜺) and
𝝎𝑘 = 𝝎𝑖 , where t𝑖 𝑗 and t𝑖𝑘 are both a function of the in-plane
strain 𝜺 = (𝜺𝑥 , 𝜺𝑦, 𝜺𝑥𝑦)𝑇 . Specifically, for example, t𝑖 𝑗 is defined as
t𝑖 𝑗 = Ft𝑖 𝑗 , where F = U(𝜺) + I is the 2 × 2 symmetric deformation
gradient, with U being the pure stretch strain tensor—excluding any
rotational component—constructed from 𝜺, and t𝑖 𝑗 is the transla-
tion in the rest state. Therefore, the material configuration under a
given macroscopic target strain 𝜺 can be determined by solving the

(a) (b)

Fig. 3. We follow [Tang et al. 2023] and use (a) in-plane periodic boundary
conditions and (b) a paraboloid surface to capture the in- and out-of-plane
deformation limits, respectively.

following unconstrained optimization problem,

min
y

𝐸planar =
1
2
(𝜺 − 𝜺)2 + 𝐸𝑐 (y) , (12)

where y = (q, 𝜺)𝑇 . In order to capture the in-plane deformation lim-
its, we set a large unreachable value as the macroscopic target strain
𝜺, from which we can obtain the boundary strain 𝜺 in a specified
direction 𝜃𝑖 .
For the specified target in-plane deformation limit 𝜺𝑡 (𝜃𝑖 ) in di-

rection 𝜃𝑖 , therefore, we define the design objective function for
in-plane deformation limits as

min
p

𝑇 =
∑︁
𝑖

1
2
(𝜺 (p, 𝜃𝑖 ) − 𝜺𝑡 (𝜃𝑖 ))2

s.t. fplanar (y(p), p, 𝜃𝑖 ) = 0 ,∀𝑖
C𝑖 𝑗 (p) > 𝜖𝑐 ,∀(𝑖, 𝑗) ∈ N

𝜖𝑙 < p < 𝜖ℎ ,

(13)

where p = (p𝑖 , · · · , p𝑛) is the design parameters of all interlocking
elements with each of them as p𝑖 = (t0, · · · , t𝑘 ) and each torus as
t𝑘 = (𝑟𝑐0, 𝑟𝑐1, 𝑅), y = (q, 𝜺)𝑇 is a function of design parameters
p, fplanar (y(p), p, 𝜃𝑖 ) = 0 is the static equilibrium constraints by
solving Equation (12) in direction 𝜃𝑖 , the constraints C𝑖 𝑗 (p) are used
to guarantee the cross-section of torus 𝑗 is smaller than the hole of
its neighbor interlocking element 𝑖 with a threshold 𝜖𝑐 for all tori in
the neighbor information set N. For example, to guarantee the cross-
section of a torus is smaller than its interlocking torus belonging
to another interlocking element, we write C𝑖 𝑗 (p) = 𝑅𝑖 − 𝑟𝑐0𝑖 −
max(𝑟𝑐0𝑗 , 𝑟𝑐1𝑗 ). In order to get a continuous constraint Jacobian,
here, we split it into two constraints, i.e., 𝑅𝑖 − 𝑟𝑐0𝑖 − 𝑟𝑐0𝑗 > 𝜖𝑐
and 𝑅𝑖 − 𝑟𝑐0𝑖 − 𝑟𝑐1𝑗 > 𝜖𝑐 . Furthermore, all design parameters are
constrained within a printable range (𝜖𝑙 , 𝜖ℎ).

Out-of-plane deformation limits. We characterize the out-of-plane
behavior of DIMs by asking a given circular patch of interlocking
elements to fit the target paraboloid surface 𝑧 = 𝐴𝑥2+𝐵𝑦2+𝐶𝑥𝑦 with
prescribed curvatures 𝜿 = (𝐴, 𝐵,𝐶)𝑇 , as shown in Figure 3(b). This
requires all the positions of elements to satisfy x𝑖 (𝜿) = (𝑥𝑖 , 𝑦𝑖 , 𝐴𝑥2

𝑖
+

𝐵𝑦2
𝑖
+𝐶𝑥𝑖𝑦𝑖 ). Similar to the in-plane case, we set a large unreachable

target bending curvature �̂� to find the out-of-plane deformation
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limits 𝜿 by solving the minimization problem

min
y

𝐸bending =
1
2
(𝜿 − �̂�)2 + 𝐸𝑐 (y) , (14)

where y = (q,𝜿)𝑇 . Once the out-of-plane deformation limits
are determined across multiple prescribed directions, we define the
out-of-plane design objective function as

min
p

𝑇 =
∑︁
𝑖

1
2
(𝜿 (p, 𝜃𝑖 ) − 𝜿𝑡 (𝜃𝑖 ))2

s.t. fbending (y(p), p, 𝜃𝑖 ) = 0 ,∀𝑖
C𝑖 𝑗 (p) > 𝜖𝑐 ,∀(𝑖, 𝑗) ∈ N

𝜖𝑙 < p < 𝜖ℎ ,

(15)

where 𝜿𝑡 (𝜃𝑖 ) is the prescribed target out-of-plane deformation limit
in direction 𝜃𝑖 , fbending (y(p), p, 𝜃𝑖 ) = 0 is the static equilibrium
constraints by solving Equation (14) in direction 𝜃𝑖 with y = (q,𝜿)𝑇
for the out-of-pane case.

Optimization. The above inverse design problems can be ex-
pressed with the following general form,

min
p

𝑇 (y(p), p)

s.t. f (y(p), p, 𝜃𝑖 ) = 0,∀𝑖 ,
C𝑖 𝑗 (p) > 𝜖𝑐 ,∀(𝑖, 𝑗) ∈ N ,

𝜖𝑙 < p < 𝜖ℎ ,

(16)

where the variables y are the state of the DIM, which is a function
of design parameters p, f (y(p), p, 𝜃𝑖 ) = 0 is the static equilibrium
constraints. We solve this constrained optimization problem using
a Sequential Quadratic Programming (SQP) algorithm with a back-
tracking line search and set a threshold of 10−2 as the condition for
convergence. We compute the gradient of the design objective as

𝑑𝑇

𝑑p
=

𝜕𝑇

𝜕y
𝑑y
𝑑p

+ 𝜕𝑇

𝜕p
, (17)

where 𝑑y
𝑑p can be computed from the sensitivity analysis as described

in Section 2 of the supplementary document. For the Hessian of
the inverse design problems, it is hard to compute and will be very
indefinite, we use the BFGS algorithm to approximate a positive
definite Hessian. To increase the robustness of the QP solver, we
further enforce the Hessian to be positive definite by shifting all
negative eigenvalues to 10−6.

Parameter-CCD. After obtaining the search direction from the
QP solver, we must ensure that there are no intersections when
changing design parameters during line search. Similar to the CCD
approach described above, we also develop a parameters-CCD to
prevent intersections while optimizing design parameters p, using
similar broad- and narrow-phase procedures.

4 RESULTS
We evaluate our method on a set of discrete interlocking mate-
rials. We start by describing our experimental setup, after which
we compare the performance of forward simulation between our
method and IPC with explicit meshes. Finally, we present multiple

Table 1. Performance comparison between our implicit method and IPC
with explicit triangle meshes for forward simulation. The threefold, fourfold,
and chainmail examples correspond to the material shown in Figure 5(I-a),
7(a), and 8(a), respectively. #Tori indicates the number of tori in the unit cell.

Example #Tori Ours [s] IPC [s] Speedup

Threefold 16 2.134 29.287 13.7x
Fourfold 18 12.375 56.325 4.6x
Chainmail 8 5.444 41.745 7.7x

designs optimized by our approach and validate our method with
corresponding physical prototypes.

Experimental Setup. We fabricate all samples using an FDMprinter
with water-dissolvable support. To validate the in-plane deforma-
tion limits, we stretch and compress samples along a given direction
3 times. Similar to Tang et al. [2023], we report a Cauchy strain-
like relative measure 𝜂 =

𝜀𝑠−𝜀𝑐
1+𝜀𝑐 in our plots, where 𝜀𝑠 and 𝜀𝑐 are

stretching and compression deformation limits. For the out-of-plane
deformation limits, we qualitatively compare our simulation results
to the corresponding physical prototypes under external uniaxial
bending.

Comparing to IPC with Explicit Meshes. We compare the perfor-
mance of our implicit method to IPC with explicit meshes as shown
in Table 1. We start from the same initial configuration and compute
the state of the in-plane deformation limit of periodic materials
under stretching in 0 degrees. Note that the boundary interlocking
elements will collide with elements on the other side of the bound-
ary due to periodicity, so we duplicate the unit cell elements for
contact purposes in both our method and IPC with explicit meshes.
We solve the static equilibrium state with a convergence threshold
10−8 for Newton’s method. We use 𝑑 = 10−8 and set the adaptive
barrier stiffness 𝜇 as the same fixed value. For IPC with explicit
meshes, we use a regular mesh with a resolution of 20 × 20 for
each torus. As can be seen from the performance comparison, our
method provides a significant speedup. In addition to the perfor-
mance comparison, we further validate our method by computing
the error of the explicit mesh with IPC relative to our method at the
state of the in-plane deformation limit, as shown in Figure 4. The
results demonstrate that the rigid body configuration converges
to the solution computed from our method as the mesh resolution
increases. These examples were tested on a machine with an Apple
M3 Pro processor and 36 GB of RAM.

Threefold Symmetric Chainmail. Our first example is the three-
fold symmetric chainmail as shown in Figure 1 and 5. Each element
of this material connects to its six immediate neighbors, leading
to an overall threefold symmetric structure for the initial homoge-
neous design; see Figure 5(I-a). This initial design exhibits the same
threefold symmetric limit profile for in-plane deformations. For the
inverse design, we use 2 by 2 elements as the unit cell, and each
element is represented by 6 parameters, i.e., 3 parameters for the
center torus and three-side tori sharing the remaining 3 parameters.
Using the initial homogeneous design as the starting point, we

first fit its uniaxial profile to seemingly challenging orthotropic
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Fig. 4. Rigid body configuration error of the explicit mesh with IPC com-
pared to our method at the in-plane deformation limit.

and anisotropic profiles for this threefold symmetric material. Our
method can effectively find the prescribed targets as shown in Fig-
ure 1(I-b) and (I-c). We then optimize it to an isotropic uniaxial
deformation limit with higher bounds as shown in Figure 1 (I-d)
and 5(I-d). Interestingly, the material profile with larger in-plane
isotropic deformation limits presents a subtle visual difference to the
initial design. To validate the effectiveness of our inverse design al-
gorithm, we measure the physical prototypes in multiple directions.
As can be seen from the strain plots in Figure 5(I), the simulation
results (blue) show a good agreement with the experimental data
(orange).

For out-of-plane cases, we employ the
same initial homogeneous pattern and op-
timize uniaxial bending curvatures on a disk
patch as shown in the inset. This initial de-
sign presents an almost isotropic uniaxial
bending profile. Utilizing the same design pa-
rameters as the in-plane case, our method can
effectively find the desired orthotropic and
isotropic uniaxial bending deformation limits
with much higher curvatures as shown in Figure 5 (II). We validate
the out-of-plane behavior qualitatively by comparing the simulation
results with the fabricated physical prototypes. As can be seen from
Figure 6, the simulation results closely track the bending behavior
of physical prototypes for all the designs.

Fourfold symmetric Material. Our second example is a fourfold
symmetric material made from elements with three orthogonal tori,
as shown in Figure 7 (a). As can be seen from the uniaxial strain
plot, this initial homogeneous design exhibits a fourfold symmetric
profile. Using 6 elements as the unit cell, with each element sharing
the same 3 parameters of a torus, we first try to optimize its uni-
axial deformation limits to isotropic as shown in Figure 7 (b). The
optimized uniaxial deformation limits for design-1 closely match
the prescribed targets only with a small difference. We then try to
optimize an orthotopic profile that has lower deformation limits in
the diagonal directions and similar deformation limits at 0 and 90
degrees. Our inverse design algorithm successfully finds the speci-
fied properties. We further optimize this material to an anisotropic
uniaxial profile, and our method finds the corresponding design that
closely matches the targets as shown in Figure 7(d). We measure the

Table 2. Statistics for inverse design examples in Figure 5, 7, and 8. The
columns list the number of tori in the simulation (#Tori), the number of
parameters used in optimization (#Parameters), the number of fitting direc-
tions (#Direction), the number of iterations for the inverse design (#Iter),
and the average time per iteration for the inverse design.

Example #Tori #Parameters #Directions #Iter Avg.
time[s]

Threefold (I-b) 16 24 16 243 62.8
Threefold(I-c) 16 24 16 112 99.5
Threefold(I-d) 16 24 24 66 104.7
Threefold(II-b) 76 24 4 129 28.4
Threefold(II-c) 76 24 4 115 36.2
Threefold(II-d) 76 24 4 107 16.8
Fourfold(b) 18 18 16 82 226.9
Fourfold(c) 18 18 16 110 137.6
Fourfold(d) 18 18 16 112 216.7
Chainmail(b) 8 24 16 37 411.1
Chainmail(c) 8 24 12 53 282.9
Chainmail(d) 8 24 12 40 342.7

deformation limits of this material at 0 and 90 degrees, all of these
simulation results show a good agreement with the experimental
measurements.

4-in-1 Chainmail. As the third example, we design the in-plane
behavior of classic chainmail as shown in Figure 8. In the inverse de-
sign, using 8 tori as the unit cell, with each having 3 parameters, we
first optimize to an orthotropic deformation limit, which has similar
tight bounds in 0 degrees but admits much larger deformation from
45 to 135 degrees. As can be seen from Figure 8(b), our inverse design
algorithm can successfully optimize the uniaxial deformation limits
to the specified orthotropic profile only with small deviations to the
targets. We then extend the orthotropic profile to an anisotropic
version with different limits in two diagonal directions. Our inverse
design algorithm can effectively find the specified targets in Figure
8(c). Our final design is to fit an isotropic behavior for the chainmail,
our method optimizes to a locally optimal solution with a larger
deviation at 30 degrees. However, as can be seen from Figure 8(d),
the deformation limit in 0 degrees increases about 4 times larger
than the initial design as prescribed in the target.

Performance & Statistics. All the inverse design examples run on
a cloud computing service equipped with an AMD EPYC 7742 with
2.25 GHz. Statistics are given in Table 2.

5 CONCLUSIONS
We presented a method for the inverse design of discrete inter-
locking materials with desired mechanical properties. Rather than
simulating using explicit meshes, we proposed an efficient low-
dimensional implicit contact model based on unions of tori to predict
the macromechanical properties of DIMs. Using this computational
model, we developed optimization-driven methods to inverse de-
sign DIMs with desired in- and out-of-plane mechanical properties.
We applied our method to a set of DIMs and validated our results
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Fig. 5. Threefold symmetric chainmail.

Fig. 6. Comparison of bending behaviors between simulation and physical prototypes.
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(a) Initial Design (b) Optimized Design-1 (c) Optimized Design-2 (d) Optimized Design-3

Fig. 7. Fourfold symmetric material.

(a) Initial Design (b) Optimized Design-1 (c) Optimized Design-2 (d) Optimized Design-3

Fig. 8. 4-in-1 chainmail.

against measurements on physical prototypes. The various designed
DIMs in the results show a good agreement with the experimental
measurement.

5.1 Limitations & Future Work
Our method has several limitations that indicate avenues for future
work. We focus on the torus as the basic building block for DIMs.
However, many other types of DIMs are not made of unions of tori.
Our implicit contact model is general and can be easily extended
for simulating and designing DIMs with other types of parametric
models.

Our formulation for singularity does not guarantee smooth con-
tact energy when the second contact point emerges with a contact
distance 𝑑 < 𝑑2 and the corresponding smallest eigenvalue 𝜆 = 0.

However, in our experiments, the smooth formulations performwell
in both forward simulation and inverse design problems. Notably,
without the introduced smooth formulation, Newton’s method fails
to compute a static equilibrium state, as no feasible step size can
be found that ensures decreasing energy. In the future, developing
new smooth contact formulations for implicit surfaces will be an
interesting direction.
Our CCD does not have formal robustness guarantees that our

method will always find the first close contact in the time interval.
However, we never encountered a case where we missed an earlier
contact in our experiments. Since tori are relatively well-behaved
geometric shapes without sharp or non-smooth features, constrain-
ing the step size to be within the radii of the two tori can reliably
allow us to find the earliest contact.
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Our method focuses on the design of DIMs with desired kinematic
deformation limits and models elements as rigid bodies without
considering elasticity and friction. This is an idealized assumption.
Developing new efficient methods capable of capturing elastic de-
formation for designing DIMs is an interesting direction for future
research. Furthermore, for DIMs with tight contact, friction force
can become dominant and lead to different macromechanical prop-
erties. As shown by Wang et al. [2021], resistance to deformation
can be controlled through normal pressure—a mechanism which
crucially relies on friction. In the future, adding friction into the
contact model for designing these contact-dominated materials will
be an interesting direction.

Our method can be applied to design two-dimensional DIMs. As
indicated by Zhou et al. [2025], DIMs can be structured as three-
dimensional architected materials for various applications. Our
method can be easily extended for simulating these 3D architected
materials. Exploring new methods for designing them will be a
worthwhile direction for future work.

Finally, we have developed a new method for designing the me-
chanical properties of heterogeneous DIMs. In the future, we would
like to design and simulate heterogeneous materials with curved
shapes and spatially varying connectivities.
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