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Fig. 1. Discrete Interlocking Materials are governed by strongly coupled, highly anisotropic, and asymmetric deformation limits. Our method is able to
capture and reproduce these effects for many types of interlocking materials (a). Using native-scale simulations as a basis (b), we construct macromechanical
deformation limits on bending and stretching (c) which we use to develop an efficient macro-scale simulation model (d).

We present a method for computational modeling, mechanical characteriza-
tion, and macro-scale simulation of discrete interlocking materials (DIM)—
3D-printed chainmail fabrics made of quasi-rigid interlocking elements.
Unlike conventional elastic materials for which deformation and restoring
force are directly coupled, the mechanics of DIM are governed by contacts
between individual elements that give rise to anisotropic deformation con-
straints. To model the mechanical behavior of these materials, we propose
a computational approach that builds on three key components. (a): we
explore the space of feasible deformations using native-scale simulations at
the per-element level. (b): based on this simulation data, we introduce the
concept of strain-space boundaries to represent deformation limits for in-
and out-of-plane deformations, and (c): we use the strain-space boundaries
to drive an efficient macro-scale simulation model based on homogenized
deformation constraints. We evaluate our method on a set of representative
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discrete interlocking materials and validate our findings against measure-
ments on physical prototypes.
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1 INTRODUCTION
Designing materials with desired mechanical properties is an im-
portant problem in science and engineering. Often, designers must
create materials whose flexibility allows for proper functioning
while providing the strength needed to prevent excessive deforma-
tion and support external loads. For conventional elastic materials,
reconciling these soft-stiff requirements means designing for strong
nonlinearities—and with increasing stiffness contrast, this task be-
comes ever more challenging. Here we consider a new class of
Discrete Interlocking Materials (DIM): generalized chainmail fab-
rics made of quasi-rigid interlocking elements. Unlike conventional
elastic materials for which restoring force increases in lockstep
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Fig. 2. Element cross-section determines coupling for bending. Two three-
fold symmetric materials are bent using the same uniaxial load case. The
elements of design (a) have circular cross-section, while cross-sections for
design (b) are slightly ellipsoidal. This small asymmetry in geometry leads
to much larger coupling between principal and orthogonal curvature.

with deformation, the mechanics of DIM is governed by contacts
between individual elements. Their particular structure leads to ex-
tremely high contrast in deformation resistance: when contacts are
sparse or unstructured, deformation is possible without any restor-
ing force (the slack regime). Once a chain of contacts is formed
along a given loading direction, further deformation is resisted with
the full strength of the base material (the taut regime). This bi-
phasic behavior lends DIM both strength and flexibility, making
them attractive for use in robotics, orthotics, sportswear, and many
other areas of application. To support such applications, however,
we must predict the macro-mechanical behavior of DIM from their
native-scale structure, i.e., element shape and connectivity. This
relation is highly non-trivial as small changes in element shape can
change the macromechanical behavior substantially (see Fig. 2).
In this work, we propose a computational approach for model-

ing and characterizing discrete interlocking materials composed of
quasi-rigid elements. Rather than through the properties of their
base material, we describe DIM through their strain-space bound-
aries that delineate the space of kinematically feasible configura-
tions. These boundaries describe multi-dimensional, highly anisotro-
pic limits for in- and out-of-plane deformations. In order to capture
this complex mechanical behavior, we propose a novel homoge-
nization approach for distilling macroscale deformation limits from
native scale simulations. For each material, we perform thousands
of virtual deformation tests for uni- and bi-axial stretching and
bending in different directions. We thus establish a sample-based
representation of a material’s feasible set of deformations, from
which we extract its strain-space boundary. We use this boundary
to derive various metrics for characterization and to develop a ho-
mogenized model for DIM that combines thin-shell simulation with
anisotropic deformation constraints for stretching and bending. Us-
ing this computational framework, we explore the space of discrete
interlocking materials and characterize the macro-mechanical be-
havior of a diverse set of samples. Our simulation-based results are
validated through real-world experiments, showing good agreement
on both qualitative and quantitative levels. In summary, the key
technical contributions of our work are

• the first formal framework for computational modeling and
mechanical characterization of discrete interlocking materi-
als,

• a method for homogenizing strain limits for in- and out-of-
plane deformations,

• a representation of multi-dimensional deformation limits as
feasible sets in strain space,

• a data-driven macromechanical model for discrete interlock-
ing materials that combines thin shell simulation with ho-
mogenized deformation constraints.

2 RELATED WORK
Metamaterial Design. Through precisely architected microstruc-

tures, flexible metamaterials can achieve a broad range of macrome-
chanical properties [Bertoldi et al. 2017]. Fueled by the increasing
availability of 3D printing technology, the graphics community has
started to embrace the problem of generating 3D-printable content
such as models optimized for stability [Lu et al. 2014; Stava et al.
2012; Zhou et al. 2013], mechanical assemblies [Ceylan et al. 2013;
Coros et al. 2013; Thomaszewski et al. 2014; Zhu et al. 2012], or
characters that can be posed and deformed in desired ways [Bächer
et al. 2012; Skouras et al. 2013]. One particular line of research
in this context investigates the creation of 3D-printable metama-
terials. The spectrum includes layered materials fabricated with
multi-material printers [Bickel et al. 2010], materials with lattice-
[Panetta et al. 2017, 2015], voxel- [Schumacher et al. 2015; Zhu
et al. 2017], and foam-like [Martínez et al. 2016, 2017] structures, as
well as two-dimensional, sheet-like materials [Leimer and Musialski
2020; Martínez et al. 2019; Schumacher et al. 2018; Tozoni et al. 2020].
While these previous works have explored many aspects of mechan-
ical metamaterials, they all focus on elastic behavior. In contrast,
we investigate a new class of metamaterials whose macro-scale
behavior is regulated by internal contact, not elastic deformation.

Homogenization. The macromechanical properties of metamate-
rials can be determined using the toolset of homogenization theory
[Bensoussan et al. 1978]. The central idea of homogenization is to
infer macroscopic descriptions for the mechanical behavior of struc-
tured materials, typically by analyzing a representative patch of
material subject to periodic boundary conditions. Most approaches
use the same discretization (e.g., volumetric finite elements) for both
native and macro scale simulation [Kharevych et al. 2009; Panetta
et al. 2015; Schumacher et al. 2015]. Nevertheless, there are also
cross-discretization approaches that map between very different
computational models, e.g., from elastic rods to thin plates [Schu-
macher et al. 2018] or thin shells [Sperl et al. 2020]. Our method is
likewise a cross-discretization approach, mapping from rigid body
simulation to a 3D shell model. Unlike previous methods, however,
we use homogenization to infer macroscopic deformation limits,
not elasticity constants.

Bi-Phasic Materials. Capturing and modeling the behavior of elas-
tic materials has a long history in graphics [Bickel et al. 2009; Hahn
et al. 2019; James and Pai 1999]. An alternative to using highly
nonlinear material models is to combine a weak elastic base mate-
rial with deformation constraints [Goldenthal et al. 2007; Jin et al.
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2017; Provot et al. 1995]. Whereas previous methods focused on
edge-based strain limiting, Thomaszewski et al. [2009] suggested
to enforce limits on per-triangle strain tensors, thus taking into
account the full state of deformation. Wang et al. [2010] extended
this concept to strain limiting based on singular value decomposi-
tion, which subsequent work applied to fully anisotropic limits on
nonlinear deformation measures [Hernandez et al. 2013; Müller et al.
2015; Perez et al. 2013; Tang et al. 2022]. Our discrete interlocking
materials can be considered an extreme case of bi-phasic materi-
als: they initially show no resistance to deformation, but exhibit
a hard stop once a limit is reached. However, instead of selecting
deformation limits to approximate the behavior of highly nonlinear
materials, we characterize materials by inferring deformation limits
from native-scale simulation data.

Simulating Contact. Robust simulation of mechanical systems
with frictional contact has been a core focus of graphics research
for many years [Baraff 1989; Bertails-Descoubes et al. 2011; Erleben
2018; Geilinger et al. 2020; Hahn 1988; Kaufman et al. 2008; Li et al.
2022; Peiret et al. 2019]. We focus our survey on methods most rele-
vant to interlocking assemblies with tight contacts. In this context,
Qu and James [2021] propose a method that computes certificates for
topological validity between arrangements of closed curves found,
e.g., when simulating knitwear [Cirio et al. 2014; Kaldor et al. 2008]
or chainmail. Robust time stepping with tight contacts is also the
focus of Li et al. [2020], who propose smoothly clamped logarithmic
barriers to guarantee intersection-free states at all times. Our native-
scale simulation model builds on an extension by Ferguson et al.
[2021] for intersection-free rigid body simulation. Building on data
from this native-scale model, we propose a macro-scale simulation
model that captures the high-level deformation behavior without
the need to handle inter-element contacts.

Interlocking Materials & Structures. Using interlocking as a mech-
anism for creating stable assemblies is a concept that is used across
architecture, robotics, and material sciences. For example, inter-
locking can be used to build functional furniture without nails or
adhesives [Song et al. 2017; Yao et al. 2017], rigid assembly puz-
zles [Song et al. 2012; Wang et al. 2018; Xin et al. 2011], and stable
surfaces made from flexible [Skouras et al. 2015] or rigid [Wang
et al. 2019] components. Interestingly, imperfections during manu-
facturing can lead to loose joints such that assemblies, despite the
rigidity of their components, can produce macroscopic deformations
that can be harnessed, e.g., for robotics applications [Lensgraf et al.
2020].

Interlocking can also be used to create strong but flexiblematerials
such as chainmail—a technique that has been known since ancient
times. There are comparatively few works in material science and
engineering that have revisited this technique. One example is the
work by Engel and Liu [2007] who proposed a micro-machining
process for creating chainmail-like fabrics. Ransley et al. [2017]
combined a chainmail material with temperature controlled actua-
tion for soft robotics applications. More recently, Wang et al. [2021]
described a friction-modulated stiffening effect when subjecting
sealed chainmail fabrics to external pressure. Our work uses the
same material principle, i.e., periodic fabric-like arrangements of
interlocking quasi-rigid elements. However, whereas Wang et al.

focus on elasticity as an emerging property, we address the funda-
mental question of quantifying the kinematic behavior of discrete
interlocking materials.

3 COMPUTATIONAL MODEL
Our goal is to construct macroscopic descriptions for discrete inter-
locking materials (DIM) with a wide range of element shapes and
topologies. To this end, we must first be able to predict the behavior
of given DIM. We start by describing our native-scale model that
simulates DIM on the level of individual elements (Sec. 3.1). We then
use native-scale simulations to create macroscopic states of in-plane
and out-of-plane deformations (Sec. 3.2). Using these macroscopic
deformation tests, we construct a strain-space representation—the
boundary between slack and taut regimes—that describes the space
of feasible deformations for a given material. Finally, we propose a
macro-scale simulation model that leverages this strain-space rep-
resentation to efficiently predict the macromechanical behavior of
DIM based on homogenized deformation constraints.

3.1 Native-Scale Model
The mechanical behavior of Discrete Interlocking Materials is de-
termined by the shape of their elements and the way in which they
interconnect, i.e., their topology. By varying element shape and topol-
ogy, a large range of macromechanical behavior can be obtained.
Here we focus on quasi-rigid elements such that the mechanical
behavior is entirely determined by kinematics—deformation limits—
not elasticity. A natural choice to model this class of DIM is to
represent individual elements as rigid bodies and model interac-
tions between neighboring elements through contact forces. To
predict deformation limits, we must compute static equilibrium con-
figurations for given boundary conditions. We follow Ferguson et
al. [2021] and cast rigid-body simulation with contact as an uncon-
strained minimization problem with logarithmic penalty functions
that guarantee intersection-free states,

min
q

𝐸Ext (q) + 𝐸Coll (q) , (1)

where q = (q1, . . . , q𝑛)𝑇 ∈ R6𝑛 is a vector holding six degrees of
freedom q𝑖 = (x𝑖 ,𝝎𝑖 ) for each of the 𝑛 rigid elements, with x𝑖 and
𝝎𝑖 denoting center-of-mass positions and rotations, respectively.
Furthermore, 𝐸Ext (q) and 𝐸Coll (q) are potentials due to gravity and
contacts. We refer to [Ferguson et al. 2021] for details.

3.2 Macro-Scale Deformations
The native-scale model allows us to study the response of DIM
to arbitrary external forces. However, in order to describe these
materials at a level of abstraction that is independent of the size and
shape of a given sample, we must choose forces that lead to uniform
macroscopic states of deformation. While we draw inspiration from
homogenization theory for elastic media, the discrete nature of DIM
requires a different approach as described next.

In-plane Deformations. To characterize the in-plane behavior of
DIM, we first define a tileable unit cell as shown in Fig. 3(a). In order
for this cell to be tileable, the positions of corresponding elements
on opposite boundaries must be related by the same translation and
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Fig. 3. Deformation limits for a three-fold symmetric material are probed in
simulation using in-plane periodic boundary conditions (a) and paraboloid
bending tests (b).

their orientations must match. For each boundary pair, these require-
ments lead to a set of periodicity conditions of the form x𝑗 = x𝑖 + t𝑖 𝑗
for translation and 𝝎 𝑗 = 𝝎𝑖 for rotation. Analogous conditions
are imposed for the second boundary pair, i.e., x𝑘 = x𝑖 + t𝑖𝑘 and
𝝎𝑘 = 𝝎𝑖 . Apart from enforcing tileability, these periodic bound-
ary conditions can also serve for prescribing in-plane strains. For a
given angle 𝜃 , any such macroscopic strain can be defined through
a principal direction d𝑝 = (cos(𝜃 ), sin(𝜃 ))𝑇 , its orthogonal direc-
tion d𝑜 = (cos(𝜃 + 𝜋

2 ), sin(𝜃 + 𝜋
2 ))

𝑇 , and corresponding directional
strains 𝜺𝑝 and 𝜺𝑜 . Given these quantities, we can define periodic
translations for biaxial states of deformation as

t𝑖 𝑗 = 𝜺𝑝 (t̄𝑇𝑖 𝑗d𝑝 )d𝑝 + 𝜺𝑜 (t̄𝑇𝑖 𝑗d𝑜 )d𝑜 , (2)

where the translations t𝑖 𝑗 and t̄𝑖 𝑗 map vertices from one boundary
to their counterparts on the opposite boundary in the current and
reference configurations, respectively. The translation t𝑖𝑘 for the
second boundary pair is determined analogously, see Fig. 3. To draw
a native-scale simulation towards a given macroscopic target strain
𝜺, we solve the constrained minimization problem

min
q,𝜺

1
2 (𝜺 − 𝜺)2 + 𝐸coll (q) s.t. CBC (q, 𝜺) = 0 , (3)

where CBC (q, 𝜺) encode the periodic boundary conditions from (2)
and 𝜺 = (𝜺𝑥 , 𝜺𝑦, 𝜺𝑥𝑦)𝑇 . Thanks to the coupling between strain vari-
ables 𝜺 and element transformations q through boundary conditions
and collision penalties, this formulation ensures that strains remain
valid even if target values are outside the feasible set.

Out-of-plane Deformations. To analyze deformation limits for
bending, we initially consider using periodic boundary conditions
analogous to the planar setting. While single curvature states—i.e.,
cylindrical bending—can be conveniently modeled in this way [Sperl
et al. 2020], the concept of periodic boundary conditions does not
readily extend to the doubly-curved setting: one cannot, in Euclidean
geometry, define a finite-sized, double-curvature patch that tiles
with itself [Sausset and Tarjus 2007]. Nevertheless, finite patches of
DIM can generally assume states of double curvature. Some materi-
als will even strongly resist uniaxial bending and prefer negative
Gaussian curvature instead, see Fig. 2(b). For this reason, we lay aside
periodic boundary conditions for out-of-plane behavior and instead

turn towards a penalty approach that encourages states of double
curvature without strictly enforcing them through constraints. To
this end, we define target surfaces with prescribed curvatures and
ask that a given patch of interlocking elements should match this
target as closely as possible. We use circular patches of paraboloid
surfaces for this purpose, which are defined as 𝑧 = 𝐴𝑥2 + 𝐵𝑦2 +𝐶𝑥𝑦.
To achieve a given target curvature 𝜿̂ , we reparameterize the posi-
tions of all elements as x𝑖 (𝜿) = (𝑥𝑖 , 𝑦𝑖 , 𝐴𝑥2

𝑖
+ 𝐵𝑦2

𝑖
+𝐶𝑥𝑖𝑦𝑖 )𝑇 , where

𝜿 = (𝐴, 𝐵,𝐶)𝑇 . We then find the feasible curvature closest to the
target value by solving the minimization problem

min
q,𝜿

1
2 (𝜿 − 𝜿̂)2 + 𝐸Coll (q(𝜿)) . (4)

As in the planar setting, simultaneously optimizing for paraboloid
parameters 𝜿 and element transformations q ensures that the cor-
responding curvature remains in the feasible set: any deviation
would lead to intersections between elements, which are strongly
penalized by the logarithmic penalty term 𝐸Coll.

3.3 Strain-Space Representation
Having established the means to enforce macro-scale deformations
for native-scale simulations, we can now start to build macrome-
chanical representations of discrete interlocking materials. Unlike
elastic materials, DIM can freely deform in a given direction until a
hard stop due to tight contact between elements prevents further
deformation. These deformation limits can vary strongly with direc-
tion and often depend on orthogonal deformations in highly nonlin-
ear ways. To derive these limits, we observe that DIM can be fully
described by enumerating all feasible macroscopic deformations.
We assume that the set of all feasible in- and out-of-plane deforma-
tions forms a closed, simply-connected region in a six-dimensional
strain space. While it is conceivable that materials violating this
assumption can be constructed using, e.g., bi-stable/snap-through
connections, we do not consider this case here. Even though bend-
ing and stretching deformations are coupled for the case of double
curvature, our experiments and analysis indicate that treating in-
and out-of-plane limits separately is a reasonable approximation
(see Sec. 4.2). We, therefore, use distinct three-dimensional strain
spaces for stretching and bending. See Fig. 4 for an example.

Fig. 4. Strain-space boundaries for the threefold symmetric chainmail ma-
terial for in-plane (left) and out-of-plane (right) deformations. Projections
of the 3D shapes onto strain-space planes are shown to improve readability.
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Stretching. Planar states of strain form a three-dimensional space
that can be parameterized in different ways. Using a canonical coor-
dinate system with two axial stretches 𝜺𝑥 , 𝜺𝑦 , and one shear strain
𝜺𝑥𝑦 is one possible choice. However, simple sampling strategies in
this space will not lead to uniform distributions of samples with
respect to the direction of deformation. For this reason, we parame-
terize planar strain through an angle 𝜃 that transforms the canonical
coordinate axes into the orthogonal directions of principal stretch.
This system has zero shear strain such that two auxiliary variables
𝜺 ′𝑝 and 𝜺 ′𝑜 for stretch along the principal axes fully describe the
planar state of strain as in Eq. (2). To explore the strain space bound-
ary, we start by uniformly sampling directions 𝜃 ∈ [0, 𝜋). For each
sampled direction 𝜃𝑖 , we gradually increase (and decrease) the prin-
cipal stretch 𝜺 ′𝑝 . For each principal stretch value we then explore
the limits of stretching and compression in the orthogonal direction.
We always enforce zero shear to ensure that our principal strain co-
ordinate system remains valid. Whenever we find a state for which
deformation in either the principal or orthogonal direction cannot
be further extremized, we have found a point on the boundary of
the feasible set. In preparation for our macro-scale model, we then
convert this point into its equivalent Green strain representation
E = (E𝑥 , E𝑦, E𝑥𝑦)𝑇 in material coordinates and add it to the list of
points used for constructing the strain space boundary.

Bending. To enable directional sampling of curvatures in analogy
to the planar setting, we observe that any paraboloid with nonzero
torsion 𝐶 ≠ 0 can be reparameterized in terms of an angle 𝜃 in-
dicating the rotation of the canonical axes onto the directions of
principal curvature. In this rotated system, we have nonzero cur-
vatures 𝐴′ ≠ 0, 𝐵′ ≠ 0 but vanishing torsion 𝐶 ′ = 0 such that we
can use the same boundary exploration strategy as for in-plane
deformations.

Strain-Space Representation. The data generation strategy out-
lined above yields sets of points on the boundary between slack
and taut regimes. We triangulate these point sets to obtain closed
and watertight surface meshes that serve as explicit boundary rep-
resentations B𝑠 and B𝑏 for stretching and bending, respectively.
See also Fig. 4. Based on these strain-space boundaries, we define
high-level directional deformation limits for characterizing discrete
interlocking materials. We furthermore use these representations
to construct macromechanical simulation models as explained next.

3.4 Macro-Scale Model
Native-scale simulation allows for accurate modeling and, conse-
quently, analysis of the mechanical behavior of discrete interlocking
materials. While the costs of native-scale simulation are acceptable
for distilling macroscopic deformation limits from small samples,
they become an impediment when exploring the behavior of larger
assemblies. To enable efficient preview of DIM with larger num-
bers of elements, we develop a macro-scale model that combines
thin-shell simulation with homogenized deformation constraints.
To this end, we use the bending model by Gingold et al. [2004] as a
basis, which provides direct access to curvature tensors using simple
four-triangle elements. We complement this bending model using

linear triangle finite elements for in-plane deformations, which we
quantify using the rotationally-invariant Green strain.
A key insight in this context is that we can enforce per-element

stretching and bending limits as set inclusion constraints in strain
space. Since the set boundaries are represented with triangle meshes,
we can leverage established collision detection algorithms for mod-
eling and enforcing strain-space constraints. To this end, we inter-
pret per-triangle strain and curvature tensors as points in three-
dimensional strain space. We enforce deformation limits through
soft constraint functions that penalize the motion of points in strain
space outside their boundaries B𝑠 and B𝑏 , respectively. Let s𝑖 ∈ R3

denote a point in strain space corresponding to the in- or out-of-
plane deformation of triangle 𝑖 . We first determine the distance
𝑑 of s𝑖 to the closest primitive—point, edge, or triangle—on B us-
ing standard geometry tests and bounding volume hierarchies for
acceleration. We then set up smooth, unilateral penalty functions as

𝐸ss (𝑑) =
{
𝑘𝑠𝑠𝑑

3 𝑑 ≥ 0
0 otherwise ,

(5)

where positive distance values 𝑑 ≥ 0 indicate points outside the
strain-space boundary and 𝑘𝑠𝑠 is a penalty coefficient. We use the
same strategy for defining penalty functions for stretching and bend-
ing limits, which are complemented by weak elastic potentials that
regularize behavior inside the feasible region. For these regulariz-
ing materials, we aim to select stiffness coefficients that are large
enough to prevent numerical problems, but small enough to not
interfere with the deformation limits. To this end, we use a soft
elastic base material with a Young’s modulus of 1250𝑃𝑎, a Poisson’s
ratio of 0.4, and a mass density of 250𝑘𝑔/𝑚3. To enable both implicit
time stepping and static equilibrium simulation for our macro-scale
model, we combine elastic and penalty potentials with an inertia
term as described by Martin et al. [2011].

By reducing the number of variables and avoiding contact resolu-
tion at the element level, our macro-scale model is able to reduce
computation times by one to two orders of magnitude compared to
native-scale simulations. We present a detailed analysis of accuracy
and computation times in Sec. 4.

4 RESULTS
We evaluate our method on a representative set of discrete interlock-
ing materials and compare results obtained through simulation to
measurements on physical prototypes. We start with a brief descrip-
tion of our experimental setup, after which we present our analysis
of individual discrete interlocking materials.

4.1 Experimental Validation
For experimental valida-
tion, we fabricate sets of
physical prototypes us-
ing 3D-printing. To ob-
tain controlled deforma-
tion for both in-plane and
out-of-plane motion, we
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Fig. 5. Dimensions of elements (mm) and topology of interlocking for the
materials considered in this work.

use a custom experimental setup as shown in the inset figure, con-
sisting of a linear stage for precision actuation and a load cell for
force measurement.

In-plane Deformation Limits. To experimentally identify the limits
of the slack region, we stretch and compress samples along given
directions until the load cell signals that a force threshold of 2𝑁
has been reached. This process is repeated 5 times in each direction,
and we report lower and upper bounds for the measurements in our
plots.

These experiments result in a set of deformation limits for stretch-
ing and compression measured in absolute units of length. To re-
move dependencies on sample size and increase readability, we
convert these limits into a Cauchy strain-like relative measure,

𝑐 =
𝑙𝑠 − 𝑙𝑐

𝑙𝑐
=

(1 + 𝜀𝑠 )𝐿 − (1 + 𝜀𝑐 )𝐿
(1 + 𝜀𝑐 )𝐿

=
𝜀𝑠 − 𝜀𝑐

1 + 𝜀𝑐
, (6)

where 𝑙𝑠 and 𝑙𝑐 are the measured lengths for stretching and compres-
sion experiments. Visually, this directional Cauchy strain indicates
the free range of travel relative to the corresponding minimal length
under compression. Eq. (6) also shows that we can easily compute
this metric from simulation data, with 𝐿 denoting a reference length
while 𝜀𝑠 and 𝜀𝑐 are corresponding stretch and compression limits.
Summarizing strain values for different directions in a polar plot
then enables direct comparison between experimental measure-
ments and simulation data.

Out-of-plane Deformation Limits. We measure bending limits on
physical prototypes using the same basic setup. To capture the state
of curvature of a given sample, we additionally use an optical track-
ing system. To this end, we place markers on selected elements such
as to sample both curvatures in principal and orthogonal directions.
We then recover the closest state of constant curvature from the
data by fitting circular arcs to the corresponding marker positions.
We use the same experimental protocol as for the in-plane measure-
ments. Due to the finite accuracy of our setup, however, we restrict
bending tests to a smaller set of discrete directions that can be easily
measured.

4.2 Analysis of Discrete Interlocking Materials
Our approach allows us to analyze a wide range of discrete interlock-
ing materials. Here we show results for a set of four representative
examples, illustrated in Fig. 5, that cover some of the major effects
to be observed in these materials. For each example, we validate
our method by comparing simulation results to measurements on
physical prototypes.

Threefold Symmetric Chainmail. Our first example is the three-
fold symmetric structure shown in Figs 5(a) and 6(a). Each element
of this material connects to its six immediate neighbors, leading to
an overall threefold symmetric structure. As can be seen from Fig.
6(b), the material shows an almost isotropic limit profile for in-plane
deformations with only small higher-frequency fluctuations. The
simulation data is furthermore within the error bars (orange) of
the experimental data. Here, the large discrepancy in the measure-
ments is arguably due to displacements being small compared to
the finite accuracy of our experimental setup. While the bending
profiles under uniaxial bending shown in Fig. 6(c) and 6(d) are also
almost isotropic, the difference in sign between principal and or-
thogonal curvature limits indicates a rather interesting coupling
behavior: when applying uniaxial bending in any given direction,
the material will bend with opposite curvature in the orthogonal
direction, leading to characteristic saddle shapes as shown in Fig.
1(a). Interestingly, the amount of coupling seems to be determined
by the aspect ratio of the elements’ cross-sections. As shown in Fig.
2, ellipsoidal shapes induce hyperbolic curvature, whereas circular
shapes lead to almost cylindrical bending. The limit plots are just a
partial view onto the full set of kinematically-feasible deformations
that is captured by our strain-space boundaries, shown in Fig. 6(e,
f ). These strain-space boundaries, which are best appreciated in the
accompanying video, feed directly into our macro-scale simulation
model, allowing us to predict the complex coupling behavior of this
material in an accurate and efficient way. See Fig. 1(d).

Torus Knot Material. Our second example is a fourfold symmetric
material consisting of torus knot elements arranged in a regular
quadrilateral grid as shown in Fig. 5(b). As can be seen from the uni-
axial strain plot in Fig. 6(b), this material exhibits almost isotropic
in-plane limits, albeit with somewhat larger margins in 30 and 60
degrees. Compared to the threefold symmetric chainmail, however,
these limits are much tighter. This material nevertheless admits
significantly larger curvature, especially in 0 and 90 degrees. Inter-
estingly, whereas this torus knot material only allows cylindrical
curvature in 0 and 90 degrees, it admits doubly-curved states in 45
degrees. All of these observations can again be derived from the
corresponding strain-space boundaries shown in Fig. 6(e, f ).

Scale Mail. Our method can also be applied to elements with more
complex geometry. In our third example, we consider a material
made from elements with a sixfold symmetric base and a hexagonal
plate on top of one side in Fig. 5(c)1. As can be seen from the uniaxial
strain plot in Fig. 6(b), our simulation results are in good agreement
with the measurements, showing a sixfold symmetric behavior with
local maxima and minima for range of motion separated by 15
1This model is a modified version of the NASA chain mail material available at https:
//www.thingiverse.com/thing:3095799
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Fig. 6. Deformations limits for threefold symmetric chain mail, torus knot, and scale mail materials. Polar plots show directional deformation limits
for uniaxial stretching (b) as well as biaxial curvature in the principal (c) and orthogonal (d) directions under uniaxial loading. For the uniaxial tests, we bend
structures in a given principal direction until reaching their curvature limits. In the orthogonal direction, the structure is left free to deform under gravity and
thus reaches a secondary curvature limit. We show the corresponding curvature limits in the principal (c) and orthogonal (d) directions. Solid curves (blue)
correspond to simulation results which are sampled from [0, 𝜋 ) and rotated to fill the range [𝜋, 2𝜋 ) , experimental data is indicated using error bars (orange).
These polar plots are partial views onto strain space boundaries for in-plane (e) and out-of-plane deformations (f ).

degrees. The curvature limits computed for this structure, shown in
Fig. 6(c, d), show slightly larger deviations from the measurements
but are still within acceptable margins.
Unlike all other materials considered here, this scale material

is not symmetric through the thickness. This asymmetry in shape
translates into an asymmetric bending behavior as shown in Fig.
12. For positive curvature, contact between the scales puts an early
stop to bending. In the negative curvature direction, the bending
limit is determined through contact between the interlocking rings
and the base, which allows for much larger deformations. This
peculiar asymmetric bending behavior can also be observed from
the strain space boundaries shown in Fig. 6(f ), which—unlike for
the other materials—shows no symmetry with respect to curvature
sign changes.

4-in-1 Chainmail. As our fourth example, we characterize the
behavior of classic chainmail. This material is made of a staggered
arrangement of ring-shaped elements that connect to their four
immediate neighbors as shown in Fig. 5(d). As can be seen from
Fig. 7(b), our simulation results for in-plane limits again show good
agreement with experimental measurements. Although the range
of travel for in-plane deformation is not substantially different from

other materials, this chainmail admits very large bending deforma-
tions. As shown in Fig. 7 (d), the bending limits are indeed not de-
termined by contact between directly connected elements but occur
when remote elements come into contact upon folding. Since these
folded configurations are far away from the constant-curvature case
that we use for determining bending limits, our method cannot
extract meaningful bending limits for this type of material. Never-
theless, accurate macro-mechanical behavior can still be obtained
by combining the in-plane limits extracted from simulation data
with a penalty-based collision handling approach such as IPC [Li
et al. 2020].

Discussion. In summary, our method is able to capture the defor-
mation limits for a wide range of discrete interlocking materials.
In our analysis of different materials, we have identified several
interesting phenomena, including strong coupling between bending
modes as well as asymmetric bending limits. Although some of the
results obtained through native-scale simulation may not align per-
fectly with experimental measurements, all of them can be deemed
within acceptable margins. While many of the plots obtained from
simulation data are smooth and symmetric, others exhibit imper-
fections and high-frequency fluctuations that are not in obvious
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Fig. 7. 4-in-1 chainmail consisting of a staggered arrangement of rings,
each of which connects to their four immediate neighbors (a). Deformation
limits for uniaxial stretching (b) and strain space boundary for in-plane
deformations (c). Bending limits are determined by contact between non-
connected elements (d).

ways connected to the symmetry of the pattern. One explanation
for such perturbations is the fact that in-plane strain is a function of
the minimum length obtained for compressive loading. Compared
to stretching, these compression tests are inherently more sensi-
tive to noise, both in simulation and reality. Discrepancies between
simulated and measured limits can also partly be attributed to the
finite precision of our measurement setup. Bending tests generally
showed much larger variations, which is arguably due to inaccura-
cies in marker placement, elastic deformations, as well as friction
and gravity.

While our characterization of in-plane limits applies to arbitrary
sample sizes, the same is not true for bending limits. As explained
in Sec. 3.2, periodic tilings of doubly-curved patches do not exist
in Euclidean geometry. Experimentally, however, we observe that
finite sample sizes do admit double curvature. As shown in Fig. 8,
our analysis of the relation between double curvature limits and
sample size suggests that both principal and orthogonal curvature
limits tighten with increasing sample size. We conjecture that this
behavior is a direct consequence of Gauss’s Theorema Egregium, i.e.,
the fact that nonzero Gaussian curvature inevitably leads to in-plane
deformation. To see this, consider a given patch size with constant
nonzero Gaussian curvature. Relative to its flat configuration, this
patch must exhibit differential in-plane deformation, e.g., stretch-
ing at its center and compression along its boundaries. Increasing
the patch size while maintaining the same Gaussian curvature, we

(a) (b) (c)
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Fig. 8. Limits for double curvature depend on sample size. Absolute cur-
vature values in both the principal and orthogonal directions decrease as
patch size increases from 4 (a) to 6 (b) and 8 (c) elements along the diameter,
corresponding to patch radii of 2.8𝑐𝑚, 4.8𝑐𝑚, and 5.8𝑐𝑚, respectively.

must either increase stretch at the center, or compression at the
boundary—but both deformations are ultimately bounded by in-
plane limits. Our conclusion from this observation is that in-plane
limits, not bending limits, prevent double curvature states as sam-
ple size increases. We argue that, by measuring double curvature
on smaller samples, our method nevertheless provides meaningful
information on the intrinsic curvature preferences of discrete inter-
locking materials. Furthermore, our macro-scale simulations will
automatically produce the effect of diminishing double curvature
as sample size is increased even though we do not directly model
coupling between in- and out-of-plane limits.

4.3 Macro-scale Simulation
Having validated the deformation limits obtained through native-
scale simulation and our strain-space boundary representation, we
now evaluate the behavior of our macro-scale simulation model. All
examples were run on a machine with an Intel Core i9-12900HK
2.5GHz processor and 32 GB of RAM.

Comparison between Native- and Macro-Scale Simulations. Using
the materials analyzed in Sec. 4.1, we apply the strain space rep-
resentations captured from native-scale simulation data to drive
the deformation constraints in our macro-scale model. Fig. 9 shows
a comparison between macro- and native-scale simulation results
for the threefold symmetric chainmail, torus knot, and scale mail
materials. For each material, we further compare results for differ-
ent physical patch sizes. For native-scale simulations, we increase
the number of elements according to patch size. For macro-scale
simulations, we simply change the size of the mesh while keeping
its resolution fixed. As can be seen from these comparisons, our
macro-scale simulation results are in good agreement with their
native-scale counterparts.
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Threefold Symmetric Chainmail Torus Knot Material Scale Mail

(a)

(b)

(c)

Fig. 9. Comparison between native- and macro-scale simulations for different materials. Static equilibrium states for applied point loads of 0.5N (red arrows)
with different patch sizes. Threefold symmetric chainmail: we use disk patches of size 2.8𝑐𝑚 (a), 4.8𝑐𝑚 (b), and 5.8𝑐𝑚 (c). Our macro-scale model uses the
same resolution—but different physical sizes— of 384 faces and 217 nodes for all three cases. Torus knot material: we use patches with 4 × 4 (a), 5 × 5 (b), and
6 × 6 (c) elements. Our macroscale model use again the same resolution (#𝑓 𝑎𝑐𝑒 = 200, #𝑛𝑜𝑑𝑒𝑠 = 121) but different physical sizes with 4.4𝑐𝑚 (a), 5.5𝑐𝑚 (b),
and 6.4𝑐𝑚 (a) side length, respectively. Scale mail: we use disk-shaped patches with 19 (a), 37 (b), and 61 (c) elements and corresponding radii of 3.4𝑐𝑚,
4.6𝑐𝑚, and 5.9𝑐𝑚, respectively. Our macro-scale simulations use the same mesh resolution (384 faces and 217 nodes) for all patch sizes.

Table 1. Performance comparison between native- and macro-scale simula-
tions for the examples shown in Fig. 9.

Example Native-scale [s] Macro-scale [s] Speedup

Threefold (a) 133.526 68.394 2.0x
Threefold (b) 883.701 61.104 20.5x
Threefold (c) 1883.044 61.734 14.5x
Torus knot (a) 216.75 78.618 2.8x
Torus knot (b) 722.203 97.602 7.4x
Torus knot (c) 1647.41 141.261 11.7x
Scale mail (a) 179.057 43.581 4.1x
Scale mail (b) 962.517 36.821 26.1x
Scale mail (c) 4929.636 40.755 121.0x

As can be seen from Tab. 1, computation times for our macro-
scale model are between one and two orders of magnitude smaller
than for the native-scale model. It can further be noted that com-
putation times for the native-scale model grow very rapidly with
increasing problem size. Our macroscale model, however, shows
almost constant cost since the same mesh resolution is used for
all physical sample sizes. Small differences between macro-scale
timings are due to the fact that more solver iterations are required
to reach equilibrium states with larger deformations.

Increasing Mesh Resolution and Young’s Modulus. To investigate
the mesh dependence of our method, we compare macro-scale sim-
ulation results with increasing mesh resolution in Fig. 10. It can be
seen that our macro-scale simulations behave consistently under
refinement. We furthermore analyze the influence of the regulariz-
ing elastic material by comparing macro-scale simulation results for
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Fig. 10. Comparison of macro-scale simulation with increasing mesh reso-
lution. We start from with coarse meshes (a) and increase resolution by a
factor of 4 (b) and 16 (c).

increasing Young’s moduli. From the results shown in Fig. 11, it can
be seen that using too large a stiffness value (5000Pa) prevents the
materials from reaching their deformation limits. It should be noted
that the lower bound on the regularizing stiffness is determined by
purely numerical considerations—below a certain stiffness, the lin-
ear solver will need additional diagonal regularization which slows
down convergence, but the solution will be largely unaffected.

Bending under Gravity. As an additional test, we further analyze
the ability of our macro-scale model to reproduce the asymmetric
bending behavior of the scale mail material. To this end, we clamp
one side of a hexagonal patch with 19 elements and let it deform
into its equilibrium state under gravity. We then turn the sample
upside down and repeat the experiment. As shown in Fig. 12, our
macro-scale model captures the salient asymmetry in bending and
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Fig. 11. Comparison of macro-scale simulations with increasing Young’s
Modulus.

Fig. 12. Asymmetric Bending Limits. Due to the through-the-thickness
asymmetry of its elements, this scale mail prototype (left) exhibits very
different bending limits for positive and negative curvature. Our macro-
scale model (right) accurately captures this behavior and closely tracks the
native-scale simulation results (middle).

closely tracks the behavior of both native-scale simulation and the
physical prototype.

Constraint Violations. We use penalty terms to enforce both in-
and out-of-plane deformation limits. For all our macro-scale simula-
tions, we use a stiffness coefficient of 1𝑒7 to ensure that constraint
violation remains below 0.01%. To further analyze the accuracy
of our macro-scale model, we investigate maximum constraint vi-
olations for the examples shown in Fig. 9. For each element, we
compute the smallest positive distance between its corresponding
point in strain space and the strain-space boundary. We normalize
these values with respect to the diagonal length of the bounding
box of the strain-space boundary and plot the maximum value as a
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Fig. 13. Constraint violations for the examples shown in Fig. 9. Maximum
constraint per-element constraint violations are plotted separately for in-
and out-of-plane limits as indicated. It can be seen that constraint violations
stay below 0.01% for all cases.

function of sample size. The results shown in Fig. 13 indicate that
constraint violations are small for all cases.

5 CONCLUSIONS
We presented a method for computational modeling, mechanical
characterization, and efficient macro-scale simulation of Discrete
Interlocking Materials—generalized chainmail fabrics made from
quasi-rigid elements. Unlike elastic materials, the mechanical behav-
ior of DIM is governed by inter-element contacts that give rise to
anisotropic deformation constraints. We proposed to explore these
limits using thousands of native-scale simulations for in- and out-of-
plane deformations. Using this simulation data, we have introduced
the concept of strain-space boundaries as an explicit representation
of the set of feasible deformations. These strain-space boundaries
provide insight into the mechanics of DIM, and they also give rise
to an efficient macro-scale simulation model based on homogenized
deformation constraints. We have applied our method to a set of
representative discrete interlocking materials and validated our find-
ings against measurements on physical prototypes. We conclude
that our methodology is well-suited for characterizing and modeling
a broad range of discrete interlocking materials.

5.1 Limitations & Future Work
There are nevertheless several limitations of our work that indicate
avenues for future work. Our analysis has focused on kinematic
motion and, consequently, we have neither considered friction nor
elastic deformations in the structure. While this approximation is
justified for many types of discrete interlocking materials, friction
forces can become dominant for tight materials in which elements
have little freedom to move. Moreover, as shown by Wang et al.
[2021], resistance to deformation can be controlled through normal
pressure—a mechanism which crucially relies on friction. To apply
our method to such friction-dominated scenarios, we would like
to extend our macro-scale model to account for internal friction.
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The work by Miguel et al. [2013] for modeling hysteresis in textiles
through internal friction might be a good starting point.
While we modeled elements as rigid bodies, this is clearly an

idealized assumption. None of our physical prototypes showed no-
ticeable deformations for in-plane loading. For bending, however,
an elastic regime can be felt for some of the materials. Modeling and
characterizing elasticity of discrete interlocking materials outside
the slack region is an interesting direction for future research.

Our method successfully captured the strain spaces for four differ-
ent types of DIM using an increasing-and-decreasing biaxial loading
scheme. Nevertheless, this simple scheme might not be able to fully
explore strain spaces that are not star-shaped, i.e., for which rays
from the origin can intersect the boundary more than once. We
expect DIM with elements admitting twist or screw-like motions to
fall into this category.
Our method offers an intuitive, systematic way for macrome-

chanical characterization which can pave the way to using DIM
for garment design. An interesting direction for future work would
be to extend our formulation to inverse design problems such as
finding element shapes that lead to desired deformation limits.
While strain space boundaries could perhaps be derived ana-

lytically for simple elements, obtaining closed-form deformation
limits for complex-shaped elements seems elusive. Nevertheless,
further analysis into the relation between structural symmetry and
deformation limits is another exciting direction for future work.

Our macro-scale model offers a computationally efficient alterna-
tive that closely tracks native-scale behavior. However, our method
does not provide geometric detail at the element level, which may be
important for applications. Exploring mechanically-aware geometry
synthesis and rendering methods in the spirit of Sperl et al. [2021]
would be a worthwhile direction for future work.

Finally, while we have focused on homogeneous patterns with
planar rest states, the space of possible discrete interlocking materi-
als is much larger. In the future, we would like to explore the design
and simulation of heterogeneous materials with curved rest shapes
and spatially varying element shapes and connectivities.
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